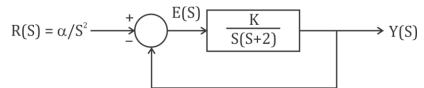


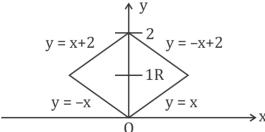
GATE 2023 Electronics Engineering

Q1. In a given sequential circuit initial state are $Q_1 = 1$ and $Q_2 = 0$. For a clk frequency of 1 MHz, the frequency of signal Q_2 in KHz is ______.

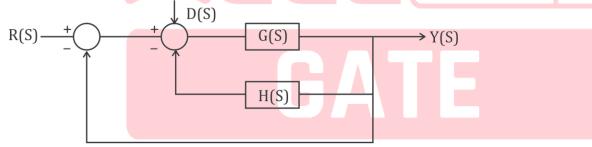
Q2. The switch S_1 was closed and S_2 was open for a long time. At t =0 switch S_1 is opened and S_2 is close simultaneously. The value of $I_c(0^+)$ in amp is


- (a) -1
- (b) 0.2
- (c) 1
- (d) 0.8

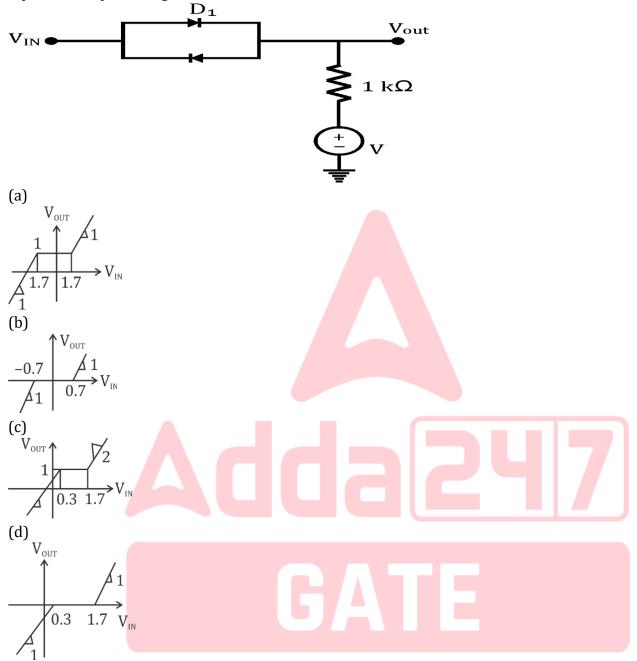
GATE


Q3. The state equation of $2^{\rm nd}$ order system is $\dot{x}(t) = Ax(t), x(0)$ is the initial condition suppose λ_1 and λ_2 are two distinct eigen values of A and V_1 and V_2 are the corresponding eigen vectors. For constant α_1 and α_2 , the solution x(t) of the state equation is

- (a) $\sum_{i=1}^{2} \alpha_i e^{4\lambda_i t} V_i$
- (b) $\sum_{i=1}^{2} \alpha_i e^{2\lambda_i t} V_i$
- (c) $\sum_{i=1}^{2} \alpha_i e^{\lambda_i t} V_i$
- (d) $\sum_{i=1}^{2} \alpha_i e^{3\lambda_i t} V_i$

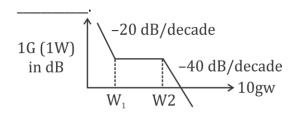

Q4. A closed loop system is shown in the figure where k > 0 and $\alpha > 0$. The steady state error due to ramp input $(R(s) > \alpha/S^2)$ is given by

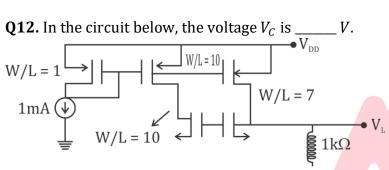
- (a) $\frac{\alpha}{4k}$ (b) $\frac{2\alpha}{k}$ (c) $\frac{\alpha}{2k}$ (d) $\frac{\alpha}{k}$
- **Q5.** The value of the integral $\iint xy \, dx \, dy$ over the region R, given in the figure, is ____.



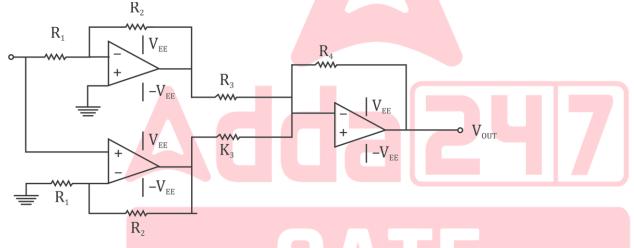
- **Q6.** Let x be $n \times 1$ real column vector with length $L = \sqrt{x^T x}$. The trace of matrix $P = xx^T$ is
- (a) $L^2/2$
- (b) L^2
- (c) $L^2/4$
- (d) L
- **Q7.** In the full block diagram R(s) and D(S) are 2 inputs. The opposite Y(S) is expressed as T(S) = $G_1(S) R(S) + G_2(S) D(S)$, $G_1(S)$ and $G_S(S)$ are given by

- (a) $G_1(S) = \frac{G(S)}{1 + G(S) + G(S)H(S)}$ and $G_2(S) = \frac{G(S)}{1 + G(S) + G(S)H(S)}$
- (b) $G_1 = \frac{G}{1 + G + GH}$ $G_2 = \frac{G}{1 + G + H}$
- (c) $G_1 = \frac{G}{1+G+H}$ $G_2 = \frac{G}{1+G+H}$
- (d) $G_1 = \frac{G}{H + G + H}$ $G_2 = \frac{G}{1 + G + GH}$
- **Q8.** A sample and hold circuit is complemented using a resistive RAT switch and a capacitor with time constant of 1 μ s. The time 2 m for the sampling switch to stay closed to charge a capacitor adequately to a full scale voltage of 1 V with 12-bit accuracy is μ s.

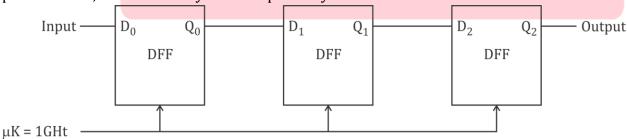

Q9. In the circuit shown below D_1 and D_2 are silicon circle with cut in voltage of 0.7V V_{IN} and V_{OUT} are input and output voltage in volt. The T.C. is



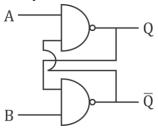
Q10. The value of line integral $\int_{P}^{Q} (Z^2 dx + 3y^2 dy + 2xz dz)$ along the straight line joined the points P(1,1,2) and Q(2,3,1) is


- (a) 20
- (b) -5
- (c) 29
- (d) 24

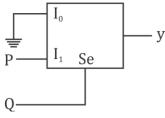
Q11. The asymptotic magnitude Bode phot of a minimum phase system is shown in the figure. The T.F of the system is $G(S) = \frac{K(S+Z)^a}{S^b(S+P)^c}$ where K, Z, p, a, b and c are positive constants. The value of (a+b+c) is



Q13. The $\frac{V_{OUT}}{V_{IN}}$ of the circuit shown below is



Q14. The synchronous sequential circuit shown below works at a circuit frequency of 1 GHz. The through put in M bitts, and the latency in nS respectively are



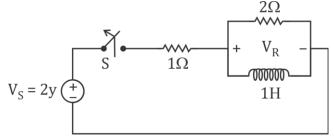
- (a) 333.333, 1
- (b) 333.33, 3
- (c) 2000, 3
- (d) 1000, 3

Q15. For the circuit shown below, the propagation delay of each NAND Gate is 1 ns. The critical path delay, in ns is –

Q16. In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown below is


(a)
$$Y = P + Q$$

(b)
$$Y = \overline{P + Q}$$


(c)
$$Y = \overline{PQ}$$

(d)
$$Y = PQ$$

Q17. In the circuit shown below, the current *i* flowing through 200 Ω resistor is _____.

Q18. In the circuit shown below, switch S was closed for a long time. If switch is opened at t=0 the maximum magnitude of the voltage V_R in volt is _____. 2Ω

Q19. The voltage of contour integral $\oint_C \left(\frac{Z+Z}{Z^2+2Z+Z}\right) dt$, where the contour C is $\left\{Z: \left|Z+1-\frac{3}{2}i\right|=1\right\}$, taken in the counter clockwise direction is

- (a) $\pi(1-j)$
- (b) $-\pi(1-j)$
- (c) $-\pi(1+j)$
- (d) $\pi(1+j)$

Q20. The open loop T.F of a unity negative f/b system is $G(S) = \frac{K}{S(1+ST_1)(1+ST_2)}$ where, K, T_1, T_2 are positive constants. The phase cross over frequency in rad/sec.

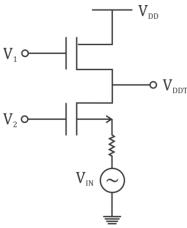
- (a) $\frac{1}{T_2\sqrt{T_1}}$
- (b) $\frac{1}{\sqrt{T_1T_2}}$
- (c) $\frac{1}{T_1\sqrt{T_2}}$
- (d) $\frac{1}{T_1T_2}$

Q21. Let $V_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ be two vectors. The value of coefficient α is the expression $V_1 = \alpha V_2 + e$.

Which minimizes the length of error vector is,

- (a) $-\frac{2}{7}$
- (b) $\frac{7}{2}$
- (c) $-\frac{7}{2}$
- (d) $\frac{2}{7}$

Adda[24]7


Q22. A series RLC circuit has a Quality factor Q of 1000 at a centre frequency of 10⁶ rad/sec. The possible value of RLC are

- (a) $R = 0.001 \Omega$, $L = 1 \mu H$ and $C = 1 \mu F$
- (b) $R = 1\Omega, L = 1\mu H$ and $C = 1\mu H$
- (c) $R = 0.01 \Omega = L = 1 \mu H \text{ and } C = 1 \mu F$
- (d) $R = 0.1 \Omega$, $L = 1 \mu H$ and $C = 1 \mu F$

Q23. Let the given vector of the matrix B be $\{\lambda_K | 1 \le K \le n\}$ and $\{V_K | 1 \le K \le n\}$, respectively. For any invertible matrix P, the sets of eigen value and eigen vector of matrix A, where $B = P^{-1}AP$, respectively are

- (a) $\{\lambda_K | 1 \le K \le n\}$ and $\{V_K | 1 \le K \le n\}$
- (b) $\{\lambda_K \det(A) | 1 \le K \le n\}$ and $\{Pv_K | 1 \le K \le n\}$
- (c) $\{\lambda_K | 1 \le K \le n\}$ and $\{PV_K | 1 \le K \le n\}$
- (d) $\{\lambda_K | 1 \le K \le n\}$ and $\{P^+V_K \le 1 \le K \le n\}$

Q24. In the circuit shown below V_1 and V_2 are bias voltage. Based on input and output impedance the circuit behave as

- (a) Voltage control source
- (b) VCCS
- (c) CCCS
- (d) CCVS

Q25. For the 2-port network shown below, the [Y] – parameter is given as $[Y] = \frac{1}{100} \begin{bmatrix} 2 & -1 \\ -1 & 4/3 \end{bmatrix} S$

The value of load impedance in Ω , for maximum power transfer will be ______.

Q26. A cascade of common source amplifier in a unity gain feedback configuration oscillate when

- (a) Closed 100 p gain is greater than 1 and phase shift is less than 180°
- (b) Close 100 p gain is less then 1 and phase shift is greater than 180°
- (c) Close 100 p gain is less then 1 and phase shift is less than 180°
- (d) Close 100 p gain is greater then 1 and phase shift is greater than 180°