Adda 247
 GATE

GATE 2023 Electronics Engineering

Q1. In a given sequential circuit initial state are $Q_{1}=1$ and $Q_{2}=0$. For a clk frequency of 1 MHz , the frequency of signal Q_{2} in KHz is \qquad .

Q2. The switch S_{1} was closed and S_{2} was open for a long time. At $\mathrm{t}=0$ switch S_{1} is opened and S_{2} is close simultaneously. The value of $I_{C}\left(0^{+}\right)$in amp is

(a) -1
(b) 0.2
(c) 1
(d) 0.8

Q3. The state equation of $2^{\text {nd }}$ order system is $\dot{x}(t)=A x(t), x(0)$ is the initial condition suppose λ_{1} and λ_{2} are two distinct eigen values of A and V_{1} and V_{2} are the corresponding eigen vectors. For constant α_{1} and α_{2}, the solution $x(t)$ of the state equation is
(a) $\sum_{i=1}^{2} \alpha_{i} e^{4 \lambda_{i} t} V_{i}$
(b) $\sum_{i=1}^{2} \alpha_{i} e^{2 \lambda_{i} t} V_{i}$
(c) $\sum_{i=1}^{2} \alpha_{i} e^{\lambda_{i} t} V_{i}$
(d) $\Sigma_{i=1}^{2} \alpha_{i} e^{3 \lambda_{i} t} V_{i}$

Q4. A closed loop system is shown in the figure where $\mathrm{k}>0$ and $\alpha>0$. The steady state error due to ramp input $\left(R(s)>\alpha / S^{2}\right)$ is given by

(a) $\frac{\alpha}{4 k}$
(b) $\frac{2 \alpha}{k}$
(c) $\frac{\alpha}{2 k}$
(d) $\frac{\alpha}{k}$

Q5. The value of the integral $\iint x y d x d y$ over the region R , given in the figure, is \qquad .

Q6. Let x be $n \times 1$ real column vector with length $L=\sqrt{x^{T} x}$. The trace of matrix $P=x x^{T}$ is
(a) $L^{2} / 2$
(b) L^{2}
(c) $L^{2} / 4$
(d) L

Q7. In the full block diagram $R(s)$ and $D(S)$ are 2 inputs. The opposite $Y(S)$ is expressed as $T(S)=$ $G_{1}(S) R(S)+G_{2}(S) D(S), G_{1}(S)$ and $G_{S}(S)$ are given by

(a) $G_{1}(S)=\frac{G(S)}{1+G(S)+G(S) H(S)}$ and $G_{2}(S)=\frac{G(S)}{1+G(S)+G(S) H(S)}$
(b) $G_{1}=\frac{G}{1+G+G H} \quad G_{2}=\frac{G}{1+G+H}$
(c) $G_{1}=\frac{G}{1+G+H} \quad G_{2}=\frac{G}{1+G+H}$
(d) $G_{1}=\frac{G}{H+G+H} \quad G_{2}=\frac{G}{1+G+G H}$

Q8. A sample and hold circuit is complemented using a resistive RAT switch and a capacitor with time constant of $1 \mu \mathrm{~s}$. The time 2 m for the sampling switch to stay closed to charge a capacitor adequately to a full scale voltage of 1 V with 12-bit accuracy is \qquad μs.

Q9. In the circuit shown below D_{1} and D_{2} are silicon circle with cut in voltage of $0.7 \mathrm{~V} V_{I N}$ and $V_{\text {OUT }}$ are input and output voltage in volt. The T.C. is

(b)

(c)

(d)

Q10. The value of line integral $\int_{P}^{Q}\left(Z^{2} d x+3 y^{2} d y+2 x z d z\right)$ along the straight line joined the points $P(1,1,2)$ and $Q(2,3,1)$ is
(a) 20
(b) -5
(c) 29
(d) 24

Q11. The asymptotic magnitude Bode phot of a minimum phase system is shown in the figure. The T.F of the system is $G(S)=\frac{K(S+Z)^{a}}{S^{b}(S+P)^{c}}$ where K, Z, p, a, b and c are positive constants. The value of $(a+b+c)$ is
\qquad .

Q12. In the circuit below, the voltage V_{C} is \qquad V.

Q13. The $\frac{V_{\text {OUT }}}{V_{\text {IN }}}$ of the circuit shown below is

Q14. The synchronous sequential circuit shown below works at a circuit frequency of 1 GHz . The through put in M bitts, and the latency in $n S$ respectively are

(a) $333.333,1$
(b) $333.33,3$
(c) 2000,3
(d) 1000,3

Q15. For the circuit shown below, the propagation delay of each NAND Gate is 1 ns . The critical path delay, in ns is -

Q16. In the circuit shown below, P and Q are the inputs. The logical function realized by the circuit shown below is

(a) $Y=P+Q$
(b) $Y=\overline{P+Q}$
(c) $Y=\overline{P Q}$
(d) $Y=P Q$

Q17. In the circuit shown below, the current i flowing through 200Ω resistor is \qquad .

Q18. In the circuit shown below, switch S was closed for a long time. If switch is opened at $t=0$ the maximum magnitude of the voltage V_{R} in volt is \qquad _.

Q19. The voltage of contour integral $\oint_{c}\left(\frac{Z+z}{Z^{2}+2 Z+z}\right) d t$, where the contour C is $\left\{Z:\left|Z+1-\frac{3}{2} i\right|=1\right\}$, taken in the counter clockwise direction is
(a) $\pi(1-j)$
(b) $-\pi(1-j)$
(c) $-\pi(1+j)$
(d) $\pi(1+j)$

Q20. The open loop T.F of a unity negative f / b system is $G(S)=\frac{K}{S\left(1+S T_{1}\right)\left(1+S T_{2}\right)}$ where, K, T_{1}, T_{2} are positive constants. The phase cross over frequency in rad/sec.
(a) $\frac{1}{T_{2} \sqrt{T_{1}}}$
(b) $\frac{1}{\sqrt{T_{1} T_{2}}}$
(c) $\frac{1}{T_{1} \sqrt{T_{2}}}$
(d) $\frac{1}{T_{1} T_{2}}$

Q21. Let $V_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ be two vectors. The value of coefficient α is the expression $V_{1}=\alpha V_{2}+e$.
Which minimizes the length of error vector is,
(a) $-\frac{2}{7}$
(b) $\frac{7}{2}$
(c) $-\frac{7}{2}$
(d) $\frac{2}{7}$

Q22. A series RLC circuit has a Quality factor Q of 1000 at a centre frequency of $10^{6} \mathrm{rad} / \mathrm{sec}$. The possible value of RLC are
(a) $R=0.001 \Omega, L=1 \mu H$ and $C=1 \mu F$
(b) $R=1 \Omega, L=1 \mu H$ and $C=1 \mu H$
(c) $R=0.01 \Omega=L=1 \mu H$ and $C=1 \mu F$
(d) $R=0.1 \Omega, L=1 \mu H$ and $C=1 \mu F$

Q23. Let the given vector of the matrix B be $\left\{\lambda_{K} \mid 1 \leq K \leq n\right\}$ and $\left\{V_{K} \mid 1 \leq K \leq n\right\}$, respectively. For any invertible matrix P , the sets of eigen value and eigen vector of matrix A , where $B=P^{-1} A P$, respectively are
(a) $\left\{\lambda_{K} \mid 1 \leq K \leq n\right\}$ and $\left\{V_{K} \mid 1 \leq K \leq n\right\}$
(b) $\left\{\lambda_{K} \operatorname{det}(A) \mid 1 \leq K \leq n\right\}$ and $\left\{P v_{K} \mid 1 \leq K \leq n\right\}$
(c) $\left\{\lambda_{K} \mid 1 \leq K \leq n\right\}$ and $\left\{P V_{K} \mid 1 \leq K \leq n\right\}$
(d) $\left\{\lambda_{K} \mid 1 \leq K \leq n\right\}$ and $\left\{P^{+} V_{K} \leq 1 \leq K \leq n\right\}$

Q24. In the circuit shown below V_{1} and V_{2} are bias voltage. Based on input and output impedance the circuit behave as

(a) Voltage control source
(b) VCCS
(c) CCCS
(d) CCVS

Q25. For the 2-port network shown below, the $[Y]$ - parameter is given as $[Y]=\frac{1}{100}\left[\begin{array}{cc}2 & -1 \\ -1 & 4 / 3\end{array}\right] S$ The value of load impedance in Ω, for maximum power transfer will be \qquad .

Q26. A cascade of common source amplifier in a unity gain feedback configuration oscillate when
(a) Closed 100 p gain is greater than 1 and phase shift is less than 180°
(b) Close 100 p gain is less then 1 and phase shift is greater than 180°
(c) Close 100 p gain is less then 1 and phase shift is less than 180°
(d) Close 100 p gain is greater then 1 and phase shift is greater than 180°

