## Adda 247

## Divisibility Rule

Divisibility by $2 \rightarrow$ If Last digit of the number is divisible by 2
Ex.: 92, 76, 112 are divisible by 2

Divisibility of $3 \rightarrow$ All such numbers the Sum of whose digits are divisible by 3
Ex.: When 335 is added to 5A7, the result is 8 B 2 is divisible by 3 . What is the largest possible value of A?
Sol.

| 5 | $A$ | 7 |
| :--- | :--- | :--- |
| 3 | 3 | 5 |
| 8 | $B$ | 2 |

$\Rightarrow A \rightarrow 1,2,3,4,5$ \&
B $\rightarrow 5,6,7,8,9$
8 B 2 is exactly $\therefore 8+\mathrm{B}+2=$ multiple of 3
$\therefore \mathrm{B}=5$ or $8 \Rightarrow \mathrm{~A}=1$ or 4

Divisibility by $\mathbf{4} \rightarrow$ If Last two digits of the number are divisible by 4
Ex.: Take the number 6316. Consider the last two digits 16 . As 16 is divisible by 4 , the original number 6316 is also divisible by 4 .

Divisibility by $5 \rightarrow$ If Last digit ( 0 and 5 ) is divisible by 5
Ex.: 100, 195, 118975 are divisible by 5

Divisibility by $6 \rightarrow$ A number is divisible by 6 If it is simultaneously divisible by 2 and 3
Ex.: 834, the number is divisible by 2 as the last digit is 4 .
The sum of digits is $8+3+4=15$, which is also divisible by 3 .
Hence 834 is divisible by 6 .

Divisibility by $7 \rightarrow$ Double the last digit and subtract it from the remaining leading truncated number. If the result is divisible by 7 , then so was the original number.
Ex.: Check to see if 203 is divisible by 7
Sol.

| 20 | 3 |
| :---: | ---: |
| -6 | $\times 2$ |
| 14 |  |

Step I. Double the last digit $=3 \times 2$
= 6
Step. 2 Subtract that from the rest of the Number $=20-6=14$
Step. 3 Check to see if the difference is divisible by 7.14 is divisible by 7 therefore 203 is also divisible by 7

Divisibility by $\mathbf{8} \rightarrow$ If Last three digits of the number are divisible by 8

Divisibility of $9 \rightarrow$ All such numbers the Sum of whose digits are divisible by 9
Ex.: If $5432 * 7$ is divisible by 9 , then the digit in place of * is
Sol. $\frac{5+4+3+2+x+7}{9}=\frac{21+x}{9}$
Put the value of ' $x$ '. So, the number is completely divisible by 9 . Put $x=6$
$=\frac{21+6}{9}=\frac{27}{9}=0$ remainder

Divisibility by $\mathbf{1 1} \rightarrow$ The difference of the sum of the digits in the odd places and the sum of digits in the even places is ' 0 ' or multiple of 11 is divisible
Ex.: If * is a digit such that $5824^{*}$ is divisible by 11 , then * equals:

## Sol:

$5 \longdiv { 8 2 }$ *
$\Rightarrow 5+2+*=8+4$
$7+*=12$

* $=12-7=5$

Divisibility by $\mathbf{1 6} \rightarrow$ If Last four digits of the number are divisible by 16

Divisibility by $25 \rightarrow$ If Last two digits of the number are divisible by 25

Divisibility by $\mathbf{3 2} \rightarrow$ If Last five digits of the number are divisible by 32

Divisibility by $\mathbf{1 2 5} \boldsymbol{\rightarrow}$ If Last three digits of the number are divisible by 125

Divisibility by $\mathbf{3 , 7 , 1 1 , 1 3 , 2 1 , 3 7}$ and $\mathbf{1 0 0 1} \rightarrow$ (i) If any number is made by repeating a digit 6 times the number will be divisible by $3,7,11,13,21,37$ and 1001 etc.
(ii) A six digit number if formed by repeating a three digit number; for example, 256, 256 or 678,678 etc. Any number of this form is always exactly divisible by $7,11,13,1001$ etc.

## Some important points $\rightarrow$

(a) If $a$ is divisible by $b$ then $a c$ is also divisible by $b$.
(b) If a is divisible by b and b is divisible by c then a is divisible by c .
(c) If n is divisible by d and m is divisible by d then ( $\mathrm{m}+\mathrm{n}$ ) and ( $\mathrm{m}-\mathrm{n}$ ) are both divisible by d . This has an important implication. Suppose 48 and 528 are both divisible by 8 . Then $(528+48)$ as well as $(528-48)$ are divisible by 8 )

Successive Division : If the quotient in a division is further used as a dividend for the next divisor and again the latest obtained divisor is used as a dividend for another divisor and so on, then it is called then " successive division" i.e, if we divide 150 by 4 , we get 37 as quotient and 2 as a remainder then if 37 it divided by another divisor say 5 then we get 7 as a quotient and 2 remainder and again if we divide 7 by another divisor say 3 we get 2 as quotient and 1 as a remainder i.e, we can represent it as following

Now you can see that the quotient obtained in the first division behaves as a dividend for another divisor 5. Once again the quotient 7 is treated as a dividend for the next divisor 3 . Thus it is clear from the above discussion as

| Dividend | Divisor | Quotient | Reminder |
| :--- | :--- | :--- | :--- |
| 150 | 4 | 37 | 2 |
| 37 | 5 | 7 | 2 |
| 7 | 3 | 2 | 1 |

So, the 150 is successively divided by 4,5 , and 3 the corresponding remainders are 2,2 and 1 .


