A

21704

120 MINUTES

1.		IMR spectrum of CH ₃ CHFBr with strong ¹ H and ¹⁹ F coupling, the two ent type of hydrogen environment exhibit Doublet and doublet of quartet Doublet and quartet Double doublet and doublet of quartet Two quartets								
2.	The er A)	ntropy of CO crystals at absol- 5.76 JK ⁻¹ mol ⁻¹ 0.69 JK ⁻¹ mol ⁻¹			ite zero B) D)	0	t predict			
3.	If e ^{ikx} i	s an eigen func	tion of 1	moment	tum ope	erator, it	s eigen value v	vill be:		
	A)	\hbar	B)	k		C)	ħk	D)	$\hbar k/2$	
4.		is the degenera Moment of inert 7		e diaton	nic rota	tional e	nergy level of 6	6h ² /4π ² I D)	2	
5.	Term :	symbol for F^{2+} $^1\Sigma_g^+$	ions is:	$^2\Sigma_{\mathrm{u}}^+$		C)	2 $\pi_{ m u}$	D)	2 $\pi_{ m g}$	
6.		ückel theory to 1, C ₃ H ₄ .	determ	ine the	energie	s of the	π orbitals of th	e allyl r	radical	
	A)	$\alpha + \beta$, α , α - β			B)	$\alpha + 2\beta$	3, α, α-2β			
	C)	α, α, α			D)	$\alpha + $	$2 \beta, \alpha, \alpha - \sqrt{2} \beta$			
7.	If two A) B) C) D)	operations con They are Hern They are linea They have the They have the	nitian ar e same e	eigen fu						
8.	presen	t in its geometr	y?	² hybrid	lization		nany $X - M - \Sigma$			
	A)	four	B)	two		C)	three	D)	six	
9.	Why of A) B) C) D)	•								

	C) D)	IR inactive an IR inactive ar							
12.		eck that a secon that the IR spe absorptions at no absorption no absorption no absorption	ctrum hat 3500 c around around	as. m ⁻¹ and 1650 1650 cm ⁻¹ 3500 cm ⁻¹	cm ⁻¹	etely oxidise	d to a keto	one you can	
13.	which	the following four a contains only of the follow Benzene > din Benzene > etl Benzene < ac Benzene < etl	one type ving? methyl e hane > a etone <	e of proton) the ether > aceton acetone > dime dimethyl ethe	e corrected by the corr	t order of change ne er ne)
14.		h of the following molecule that $I_A = 0$, and $I_B = I_A > I_B$, and $I_B = I_A > I_B$.	lies on	the A axis?			l moment	s of inertia of	f
15.	Which A) B) C) D)	94 and 96 there is just of	eaks are eaks hav		and occ in the r	ur at m/z val atio 3:1 and with an m/	ues of 94 occur at n z value of	and 96 n/z values of	
16		T, H, and U are he Joule-Thoms				y and intern	al energy	respectively,	
	A)	$\left(\frac{\partial T}{\partial p}\right)$ H	B)	$\left(\frac{\partial H}{\partial p}\right)$ T	C)	$\left(\frac{\partial p}{\partial T}\right)$ H	D)	$\left(\frac{\partial T}{\partial H}\right)_{p}$	

Which statement is true about the change in symmetry on going from BF₃ to [BF₄]⁻?

The symmetric stretching mode for PCl_3 is of A_1 symmetry. In the C_{3v} character table, there are z and $(x^2+y^2,\,z^2)$ entries in the A_1 row. This tells you that the

The point group changes from D_{3h} to T_d

The point group changes from C_{3v} to T_d

The point group changes from D_{3h} to D_{4h} The point group changes from D_{3h} to C_{3v}

symmetric stretching mode of PCl₃ is: A) IR active and Raman inactive

IR active and Raman active

10.

11.

A)B)

C)

D)

A) B)

	resulta A)	ant solution. 2	B)	7		C)	14	D)	12
18.	The er A) C)	ntropy of a mon Boltmann equ Nernst-Einste	ation		B)	Sacku	using r-Tetrode equa us- Clapeyron		n
19.		and a high both A liquid with and a high both A liquid with and a high both an	rature w a low v iling po a low v iling po a high v iling po a low v	rith its vapour pint. apour pint. vapour pint. vapour pint. apour p	ressure ressure pressure ressure	will prowill p	-	ow surfa	Face tension ace tension Face tension
20.	-	ystallises in the $_{n+}/r_{K+}=0.74, c$		_					
	A)	0.732	B)	1.224		C)	1.414	D)	1.122
21.		of H ₂ gas effus Pusion of the sar 55 seconds : C 20 seconds : C	me volu CO2	me of t	he gas s B)	specified 25 sec			
22.	Which	of the following	ng relati	ons are	incorre	ect?			
	$1. \left(\frac{\partial I}{\partial S} \right)$	$\left(\frac{H}{S}\right)_{P} = T,$	$2. \left(\frac{\hat{c}}{\hat{c}}\right)$	$\left(\frac{\partial G}{\partial T}\right)_V = -\frac{\partial G}{\partial T}$	-S,	3. $\left(\frac{\partial}{\partial t}\right)$	$\left(\frac{\partial E}{\partial T}\right)_P = T,$	4. $\left(\frac{\partial}{\partial t}\right)$	$\left(\frac{\partial E}{\partial V}\right)_{S} = -\mathbf{P}$
	A)	1 and 2 only	B)	2 and	3 only	C)	3 and 4 only	D)	1 and 3 only
23.	Choos A) B) C) D)	Fermion and lethe Boltzmann The entropy in	e partition partition partition partition function functi	robabili oution as s with in anctions	ty district the endereasing are equal to the	ibutions ergy inc ig molai ually fac		and mo	re like

 $40\ ml$ of $0.1\ M$ HCl is mixed with $10\ ml$ of $0.45\ M$ NaOH. Calculate the pH of

17.

24.		the increase in ases to 1/4th in				Fe ³⁺ ions if Ol	H ⁻ ions c	oncentration
	Fe(C	$OH)_{3(s)} \longleftrightarrow 1$	Fe ³⁺ _(aq) -	+ 3OH ⁻ (aq)				
	A)	8 times	B)	16 times	C)	4 times	D)	64 times
25.	substa order	r the same read ance becomes kinetics respe e reaction is:	half in 6	0 seconds and	l 15 seco	onds through:	first- ord	er and zero-
	A)	1.2 mol/L	B)	0.9 mol/L	C)	0. 6 mol/L	D)	0.3 mol/L
26.	tempe	yring plot allour T deping a typical Ey	endence	of the rate co				
	A) C)	$\ln k$ against $\ln(k/T)$ agai		B) D)	,	T) against 1/T /T) against <i>kT</i>		
27.	Which A) B) C) D)	The formation The decomp	n statisti on of act osition o	cal mechanics ivated completed activated co	s ex to be a omplex is	rapid		
28.		ider the overal (s) + $Cd(S)$ + 2			_		m batter	y:
	Whic	h of the follow	ing occu	ars at the anod	le as the	reaction proce	eeds?	
	A)	Cd loses 2e-	and for	ms Cd(OH) _{2(s})			
	B)	Cd gains 2e-	and for	ms Cd(OH) _{2(s})			
	C) D)			orms Ni(OH) orms Ni(OH)	` /			
29.		is the potentia no ion concen -0.822V			isting of		a solution	on in which +1.45 V
30.	Whice A) B) C) D)	easier to cor We have to because the The directio	ge dependent direction measure potential n of a re	ds on concent fferent electro the cell poten l of half-react dox reaction of	rations, use the mical to olions can only	using standard	rence in red direct d experin	potential ly. nentally.
	,			th a standardis				

31.	At very high pressure the Langmuir adsorption isotherm is represented as ('x' is the mass of the gas adsorbed on 'm' g of the adsorbent, 'a' and 'b' are constants, 'p' is the pressure)											
	A)	,	B)	x/m =	1/ap	C)	x/m = ap	D)	x/m = a/b			
32.	Which A) B) C) D)	of the following Irreversible so Readily coagus Formed from Self stabilized	ol ulated b inorgar	y additi	on of e							
33.	Colloid A) C)	dal sulphur ma $Na_2S_2O_3$ and Na_2S and FeC	I_2	oduced l	by reac B) D)	H_2S a	tween solution and FeCl ₃ and HI	ns of:				
34.	A surfactant with a very large Hydrophile-Lipophile Balance (HLB) value (e.g. 40) is expected to function as a:											
	A) C)	Anti-foaming Oil in water (agent	nulsifier	oility enhancer r in oil(w/o)	emulsif	ier					
35.		nal energy levo is equal to 21 increases wit	ncreases with increase in J value ecreases with increase in J value									
36.	(A)	errors does not Operational			_	y of cor C)	nstant errors. Erratic	D)	Proportional			
37.	What is A) B) C) D)	Is meant by the The lineage of The generalize The resolution The inherent of bias and leve	of the da tation propertion of the quality	ta resent in data of the data	the so		ta crized by its ac	ecuracy,	precision,			
38.	The so	lubility produc	et , Ksp	of CaSO	O ₄ is 6.	4 x 10 ⁻⁵	The solubili	ty of Cas	SO ₄ in mol/			
	A)	8 x 10 ⁻⁵	B)	8 x 10	-3	C)	8 x 10 ⁻¹⁰	D)	1.6×10^{-3}			
39.	In whi A) C)	ch of the follow Sodium ferroe Sodium cobal	cyanide	•	es K ⁺ fo B) D)	Sodi	solution? um bicarbona um argentocya					
40.	An iso A) C)	cratic elution i remains const changes in a s	tant		in whi B) D)	chang	composition of ges continuous of these		vent			

41.	The u	se of insulin hor	mone to purif	y its rec	eptor is	s an example o	of:	
	A)	Affinity chrom	natography					
	B)	Ion exchange c	chromatograp	hy				
	C)	Gel filtration c	hromatograpl	hy				
	D)	Ligand mediate						
	2)			,p.1.j				
42.		n of the following		nethod	is suite	d for a protein	sample	with large
	differ	ences in molecul	lar mass?					
	A)	Dialysis						
	B)	Rate zonal cen	trifugation					
	Ć)	Density gradie	_	ion				
	D)	Salting out pro	_					
43.	Whiel	n type of compor	unds in water	are mos	st suitab	ole for trapping	g at low	
		ntrations using s						nes if using
		olar stationary pl			` /	C		C
	A) 1	ionic compoun						
	B)							
	C)	moderately pol		ls				
	D)	weakly polar c		-				
	2)	wearing poter e	ompounds					
44.	Which	n of the following	g additives ca	n be us	ed to ex	tract an anion	such as	perchlorate
44.		an aqueous phase						1
	A)	no additive is r	_	B)		f an ion pair re	eagent	
	C)	use of an anion		D)		f a crown ethe		
4.5	T:I							
45.		escence occurs w			<i>C</i> ()	1.0-5	D)	1.0-5
	A)	10^{-5} s.	B) 10 ⁻⁵ r	ns.	C)	10 ⁻⁵ μs.	D)	10 ⁻⁵ ns.
46.	•	al fiber operates						
	A)	Total internal r		B)		-conduction		
	C)	Photo-electric	effect	D)	Laser	technology		
47.	Whiel	n sentence is fals	se about Turb	idimetry	?			
	A)	Concerned with				y of the transn	nitted lig	ht as a
	,	function of con				•	_	
	B)	Greater concer						
	C)	Concentration				, ,	,	
	D)	The intensity o				ed in a line i.e	180° to	o the incident
	2)	light		11811112			., 100 0	
48.	Limiti	ing current in po	olarogranhy de	enends c	n:			
	A)	Residual curre		B)		sion current		
	C)	Kinetic current		D)		e above		
	C_j	KINCHE CUITEIN	ι	ט)	AII III	ic above		

49.	What	problem might	_	resee in	ı labe	elling	g a dru	g as shown'	?	
	A) B) C) D)	The isotope con The Isotope co	ould be ould be	lost as	a re	sult (of a me	etabolic oxi		r
50.	Which A) C)	n pair of isotope Carbon-12 an Hydrogen an	d carbo	n-14	B)		Carbo	n-12 and ca		
51.	Which A) B) C) D)	of the following TGA, DTA and TGA and DTA TGA, DTA and TMA is a received	nd DSC A can b nd DSC	are more carried are more	easui ed ou easui	ed u it sir ed u	ising sa nultane ising di	me instrum cously.		
52.		$+1/2 O_2 \rightarrow C_2H$ ace of catalyst. I 25.7%			atoı		onomy		akes place u	nder 100.0%
53.	Which A) C)	of the followin [Cr(NH ₃) ₆] [C [Pt(NH ₃) ₄] [P	Co(NC)	6]	B)	[C	oCl ₂ (eı	n) ₂]Cl		
54.	atom i	ich of the follow is sp ³ hybridized NO ₂ - and NH NH ₂ - and H ₂ O	d? I ₂ -	olecles	/ions B) D)		BF ₃ , a	-, NH_2 - and nH_2 - and H_2O	$1 H_2O$, the co	entral
55.	The re	eaction of S ₄ N ₄ S ₂ N ₂ -	with m B)	etallic S ₃ N ₃	•	ssiur	n lead C)	s to the form $S_4N_4^{2-}$	mation of D)	S_2N_2
56.		hich of the follo hidal structure? BrF ₃	owing r B)	nolecul BF3	les w	ould	l VSEF C)	PR theory property PF ₃	redict a trigo	onal ClF ₃
57.		ion of B_2H_6 wit $Na[BH_4]$ and B_4H_{10}	h Na/H	g leads	to tl B) D)	ne fo	rmatio BH3 a	n of nd B3H9	and B_4H_{10}	

- A) Dicarba-nido-heptaborane(13)
- B) Dicarba-closo- heptaborane(13)
- C) Dicarba-closo- nonaborane
- D) Dicarba-nido-nonaborane(13)

59.	Arran	ge the following	ng ions a	ccordin	ng to the	eir magr	netic moment		
		(i) Ni ²⁺	(ii) Fe	3+	(iii) M	n ⁴⁺	(iv) V ⁴⁺		
	At.N	No.s $Ni = 28$	(ii) Fe	= 26	(iii) Mr	n = 25	(iv) $V = 23$		
	A)	(ii) > (iii) >	(iv) > (i)	B)	(ii) >	(iii) > (i) > (i	iv)	
	C)	(i) > (ii) >	(iv) > (iv)	iii)	D)	(iii) >	(ii) > (iv) > ((i)	
60.	The m A)	ost important i Monazite san	mineral o	of lanth Magne	anide is etite	<u>C)</u>	Carnotites	D)	Xenotime
61.	Which A)	n of the followi La(OH) ₃	ng is mo B)				Lu(OH) ₃	D)	Gd(OH) ₃
62.	Which	of the followi	ng comb	ination	ıs can be	e regard	ed as hard acid	s?	
	A)	NCS and Hg	2+		B)	CN- ar	nd Au ⁺		
	C)	Cu ⁺ and CN ⁻			D)	SCN- a	and Mn ²⁺		
63.	Amon A)	g the following PF ₆ and SF ₆	-	ir in wh	nich the B)	two spe SF4 an	cies are not iso d SiF ₄	structur	ral is:
	C)	BH ₄ and NH	[₄ ⁺		D)	IO ₃ - ar	nd XeO ₃		
64.65.	A) C)	Below curie t	emperati emperati	ure ure	B) D)	Above Above	cs: Neel temperate th 4 unpaired e	ture	s
05.	Identii	ry the complex	SHOWING	gillagir	ctic inoi	iiciit wi	ш + шрапса с	iceti oni	,
	A)	$[CoF_3(H_2O)_3]$	B)	[Fe(H	$(20)_6]^{3+}$	C)	$[Ti(H2O)]^{3+}$	D)	$[V(H_2O)_6]^+$
66.	Which	of the followi	ng organ	ometal	llic com	pounds	is the strong ba	ase?	
	A)	CH_3MgBr	B)	CH ₃ Z ₁	nBr	C)	(CH ₃) ₂ CuLi	D)	CH ₃ Li
67.	Which A) B) C) D)	An alkyllithiu A Grignard re	im reage eagent re dium cor	nt is a acts as npound	very stro if it wer l is not v	ong basere a neg	atively charged ctive compared	d carbar	

68. Identify the product in the following reaction

69. What is oxidation number of Fe in Rubredoxin, Fe-S protein?

- A) +2
- B) +3
- C) +6
- D) +2 & +3

70. Reduction of nitrogen to ammonia, carried out by the enzyme nitrogenase, needs:

- A) 2 electrons
- B) 4 electrons
- C) 6 electrons
- D) 8 electrons

71. Deoxy-hemocyanin is:

- A) Colourless and paramagnetic
- B) Ble and paramagnetic
- C) Colourless and diamagnetic
- D) Heme protein and paramagnetic

72. Calmoduline protein contains ---- calcium ions and ----amino acid residues, respectively:

- A) 4 and 148
- B) 4 and 74
- C) 6 and 148
- D) 3 and 74

73. Self thermo regulated systems are called as-----.

- A) Green methodologies
- B) Green synthesis
- C) Green principles
- D) Green concepts

74. In petrochemical industry, both in conventional method and green synthesis what is the first product obtained?

- A) 2-ethyl benzene
- B) 2-methyl propyl benzene
- C) Methyl methacrylate
- D) Ethanol

75. Microwave dielectric heating works with----and ----mechanism.

- A) Ionic conduction and electron polarization
- B) Electron polarization and dipolar polarization
- C) Dipolar polarization and ionic conduction
- D) Both A and C

76. Which of the following cyclodextrin is called cycloheptamylose.

- A) α-Cyclodextrin
- B) β-Cyclodextrin
- C) γ- cyclodextrin
- D) None of these

77.	The s	size of a quant 5 x 10 ⁽⁻⁷⁾	tum dot is B)			C)	5 x 10 ⁽⁻¹⁰⁾	D)	5 x 10 ⁽⁻¹¹⁾		
78.	Nano A)	particles of v	which ator	m are us Carbo		ontrol c	collateral dama Aluminium		o explosion? Lead		
	A)	Соррег	D)	Caroc)11	C)	Alummum	. D)	Lead		
79.	The 6 A)	electrical cond	luctivity (B)	of a nand 100	otube is	s t	imes that of c	opper. D)	1/100		
80.		class of compo entration are r			t liquid	crystal	line behavior	on variat	ion of		
	A)	Lyotropic 1			B)	Then	motropic liqui	d crystal			
	C)	Isotropic lie			D)		of these	J			
81.	The c	elean water sh	ould have	e BOD v	value						
	A)	40 mg/L			B)	20 m	g/L				
	C)	10 mg/L			D)	Less	than 5 mg/L				
82.			-			altitud	e through mos	t of the s	tratosphere is:		
	A)	greenhouse	_								
	B)		-	-			n by oxygen a	nd ozone	•		
	C)	water vapor									
	D)	sunlight is	more inte	nse in th	ne strate	osphere	:				
83.	Which of the following statements about ozone is wrong? A) Ozone can be used for the purification of drinking water										
	A)						•				
	B)						ormation of p				
	C)		-				s maximum ir		•		
	D)	On the aver	rage ozon	e is moi	re abun	dant at	the poles than	at the eq	uator		
84.		t the correct a				_					
	A)	Hazard = ex					sure = hazard				
	C)	Risk = haza	ard x expo	osure	D)	Risk	= Hazard x to	xıcıty			
85.	Whic	h are natural :	sinks for	ClO. rac	dicals in	n other	parts of strato	sphere?			
	A)	CH ₄ and No	O ₂ B)	Cl ₂ ar	nd O ₃	C)	NO and NO	D_2 D)	SO ₂ and NO		
86.	Whic			mer has	s weake		molecular for	ces of att	raction?		
	A)	natural rubl			B)	nylor					
	C)	poly(vinyl	chloride))	D)	cellul	lose				
87.		olactum neede angement of:	ed for ma	nufactui	re of ny	lon-6 is	s obtained by	Beckman	ı		
	A)	Benzophen	one oxim	e	B)	Cycle	ohexanone ox	ime.			
	C)	Cyclopenta	none oxi	me	Ď)	-	ophenone oxir				

88.		ge the followin	ig mono	omers in thei	r decreasi	ng ability to ι	ındergo a	nion	
		CH ₂ =CHCN	2. C	H ₂ =CHCl	3.	CH ₂ =CHCH ₃			
	A)	CH ₂ =CHCN			2=CHCH	3			
	B)	CH ₂ =CHCl > CH ₂ =CHCH ₃							
	C) D)	CH ₂ =CHCN							
89.	Which	h of the follow	ing state	ements is tru	e?				
	A)	The most sta	ble conf	formation of	a drug is				
	B)	The active co				•		•	
	C) D)	The active co	onforma	tion is the co					
		to its target b	inding s	site					
90.			-					ovo drug desig	gn?
	A)	DOCK	B)	# LUDI	C)	CHEM3D	D)	CoMFA	
91.	The u	unit of LD50 is							
	A)	gram/gram o				1 .			
	B) C)	milligrams/ k kilogram/gra				ht			
	D)	milligrams/gra							
92.	Whiel	h of the follow	no is ar	n example of	a super e	nzvme?			
	A)	Kinases		B)		ribosomal pe	ptide syn	thases	
	C)	Esterases		D)	Prote	eases			
93.	The p	oint group pres	ent in [PdCl ₄] ²⁻ is:					
	A)	D_{4h}	B)	D_{5d}	C)	$C_{\infty v}$	D)	C_{4h}	
94.	•	otential site for			icity is:				
	A)	Neuron	B)	Neuroglia	C)	Axon	D)	Synapse	
95.	Which	h is the least re	active c	ompound by	the S _N 1	mechanism?			
			3r						
			-		MeO	Br			
	4.	MeO >		(D)		J			
	A)			(B)	v				
			Br		CI	Br			

D)

- 96. S_N2 mechanism proceeds through the formation of:
 - A) Ccarbonium ion
- B) Transition state
- C) Free radical
- D) Carbanion
- 97. Which of the following statements is correct with respect to the carbanions?
 - A) The carbon carrying the charge has even number of valence electrons
 - B) They are formed through homolytic fission
 - C) They have distorted octahedral structure
 - D) The hybridisation of carbon in carbanion is sp²
- 98. Which combination of reagents is appropriate for the following transformation?

- A) 1) HOCH₂CH₂OH, H⁺; 2). LiAlH₄, Et₂O; 3). H₃O⁺
- B) 1) NaBH₄, MeOH; 2). LiAlH₄, Et₂O; 3). H₃O⁺
- C) 1) LiAlH₄, Et₂O; 2). H₃O⁺
- D) NaBH₄, MeOH
- 99. Which of the following dienophiles is the least reactive in normal Diels-Alder reactions?

- 100. The reagent used in Dickmann condensation is:
 - A) Anhy. AlCl₃
- B) Al(OCH Me)₃

C) C₂H₅ONa

- D) KNH₂ in Liquid NH₃
- 101. Acetaldehyde (CH₃CHO) undergoes a Wolf-Kishner reaction, which is the addition of hydrazine (H₂NNH₂) with subsequent addition of a base and heat. In this reaction, the aldehyde is-----, resulting in a(n) ------ product.
 - A) oxidized, .amide
- B) oxidized, carboxylic acid
- C) reduced, alkane
- D) reduced, alcohol
- 102. The conversion of pinacol to pinacolone using electrophylic reagents occurs via:
 - A) a carbonium ion
- B) a carbine
- C) a free radical
- D) a carbanion

103. Which of unsaturated aldehydes (a)-(d) is the sigmatropic rearrangement product obtained by heating the following ether?

104. Which side-chain carbon makes a new bond to the benzene ring upon Claisen rearrangement of the following allylic phenyl ether?

105. (2R,4S) –2,4–Dichloropentane and (2S,4R)-2,4-dichloropentane are:

A)

- A) enantiomersB) diastereomersC) identicalD) conformational isomers
- 106. Which of the following compounds has a stereoisomer that is a mesocompond?
 - A) 2,4-dibromohexane B) 2,4-dibromopentane C) 1,4 dichlorocyclohexane D) 2,4 dimethyl pentane
- 107. The following involves two pericyclic reactions. Which combination indicates correctly the types of reaction involved?

- A) [4+2] cycloaddition + [2+2] cycloreversion
- B) cheletropic reaction + [4+2] cycloaddition
- C) [4+2] cycloaddition + [4+1] cycloreversion
- D) [4+2] cycloaddition + cheletropic

108. Which of the following is classified as an electrocyclic reaction?

- 109. How many ester linkages are present in a typical phospholipid?

 A) 2 B) 3 C) 4 D) 5
- 110. Atropine is prepared by heating the mixture of reactants A and B in the presence of hydrogen chloride. The reactant A is tropine and the reactant B isA) Tropic acid B) Tropinic acid C) Tropinone D) Pimelic acid
- 111. Many natural products contain a tertiary amine with a methyl substituent. What reagent is used to remove the methyl substituent in the following reaction sequence?
 - A) Lithium aluminium hydride
- B) Sodium hydroxide
- C) Hydrogen chloride
- D) Vinyloxycarbonyl chloride
- 112. Which of the following base sequences would most likely be recognized by a restriction endonuclease?
 - A) ACATCGT B) ACGGGT C) ACGGCA D) ACGCGT

113. If you were to perform an oxy-Cope reaction shown below, you would not isolate the product drawn on the right side of the arrow. Why not?

- A) Equilibrium favors the starting material because it is lower in energy.
- B) The reaction cannot form the product drawn because of orbital symmetry rules.
- C) The product will aromatize to form a phenol
- D) The product will undergo a tautomerization reaction to form an aldehyde
- 114. In the following thermal reaction, which side of the equilibrium is favored and why?

- A) The product is favored because it is aromatic
- B) The starting material is favored because ring strain is relieved
- C) The product is favored because there are more C-C single bonds
- D) The starting material is favored due to orbital symmetry rules
- 115. The following are the four heteroaromatic bases found in DNA. Which base pair can form three hydrogen bonds?

116. Which of the following structures is a sesquiterpene?

117. Which of the following tetracyclic compounds corresponds to the typical 17-carbon steroid nucleus?

- 118. Which of the following X-ray diffraction methods can be used to determine the symmetry and orientation of crystals, mainly those with imperfect morphology?
 - A) Bragg's spectrometer
 - B) Laue's photographic method
 - C) Weissenberg rotating crystal method
 - D) Debye and Scherer powder method
- 119. The van der Waals constant b for O₂ is 0.0319 L/mol. The volume of one molecule is
 - A) $1.32 \times 10^{-29} \text{ m}^3$
- B) $1.32 \times 10^{-26} \text{ m}^3$
- C) $7.94 \times 10^{-6} \text{ m}^3$
- D) $3.72 \times 10^{-23} \text{ m}^3$
- 120. Pick out the pair of conjugate elements for the $C_{3\nu}$ point group
 - A) C_3^1 and C_3^2 B)
- C_3^2 and σ_{V2}
- C) C_3^1 and σ_{V1}
- D) C_{3}^{1} and σ_{V2}