A

20203 120 MINUTES

1.	A)	Taxus	B)	Gnetum	C)	Ephedra	D)	Pinus
2.	Which A)	ch of the follow Pili Axial filame	_	aving rings and B) D)	Fimb	-		
3.	Hfr b A) B) C) D)	_	ansfer of f F plasm of Plasm	f F plasmid				
4.	Amo A)	ng the followin Virus	ng exam B)	ples, alone Prion	e share p	properties of (Viroid	Chaperon D)	es. Retrovirus
5.	In a (i) (ii)	one fruit dra	wn fron	are red and then the bunch at run the bunch at	andom	is red		probability that
	A)	1/2 & 3/7	B)	1/4 & 2/5	C)	1/3 & 3/7	D)	1/3 & 2/7
6.	A) C)	Mollecutes Gymnosperi	ns	B) D)		osperms		0
7.	A) C)	Ulva Sargasssum		g possess isomo B) D)	Lami	apiodipontic i inaria siphonia	ille cycle	?
8.	Irish A) C)	moss is: Porella Funaria		B) D)		vicinia ndruscrispus		
9.	Evolu A) C)	ution of chloro Bold and W Lee	-	the major criter B) D)	ria in the Rour Fritse	nd	n propose	ed by:
10.	1. 2. 3.	Mature arch A largest eg Neck canal	egoniun g cells are		cells	_	-	
	A)	1 & 2 only	В)	2 & 3 only	C)	2 only	D)	1, 2 & 3

11.	Phen	otypic and genotypic F2		is the sam	e in:			
	A)	Intermediate dominar	ice B)	Co do	minance			
	C)	Overdominance	D)	Domir	nant epistasis			
12.	Name	e the place in India know		mine of l	Liverworts:			
	A)	Eastern Himalaya	B)	Weste	rn Himalaya			
	C)	Western Ghats	D)	Sunde	rbans			
13.	Meno A) B) C) D)	del, after his experiment Drosophila and Neuro Honey bee and Neuro Heiracium and honey Drosophila and honey	ospora ospora bee	ı pea, con	tinued his exp	erimen	ts with:	
14.		development of a spo mediate formation and fo	ertilization of	•	is		without the	
	A)	Apospory B)	Apogamy	C)	Recurvation	D)	None of the	se
15.		is the most important in id of pith:	nternal comp	onent of p	olant body. Ch	oose a	stele which is	
	A)	Siphonostele B)	Haplostele	C)	Solenostele	D)	Dictyostele	
16.	In the A) B) C) D)	Phloem present inner Phloem is surrounded Phloem present on bo Phloem is present out	side of xyler by xylem th sides of xy	n ylem				
17.	The t	ype of spore developme	nt on Marsile	ea is				
	A)	Eusporangiate type	B)	Polysp	orangiate type	•		
	C)	Leptosporangiate type	e D)	Arche	goniate type			
18.		ify the causative organiceads to loss of yield:	sm of Coffee	e rust a de	vastating folia	r disea	se of the plant	
	A)	Hemileia vastatrix	B)		lerma philipp	ii		
	C)	Gibberella stilboide	s D)	Armil	laria mellea			
19.	The p	pollen grains of Pinus at	the time its r	release is				
	A)	One-nucleate	B)	Two n	ucleate			
	C)	Three nucleate	D)	Four n	ucleate			
20.	Whic	ch among the following	is a unique fe	eature of C	Gram-positive	bacteri	a?	
	A)	Outer membrane	B)		protein			
	C)	Thin peptidoglycan co	ell wall D)	Teicho	oic acids			
21.		da Balsam is obtained fi						
	A)	Agathis B)	Araucaria	C)	Pinus	D)	Abies	

22.	Which A)	among the fol RAPD		s a codo AFLP	ominan	t marker C)	r? STMS	Б))	AP PCR
23.	heteroz If a cro	pdragon the Rezygous productors between two Prink in the rate TtRR X TtRr	ing Pink o shapdr	flowers ageons	s. Tall p produc	olant is c	completely Red, Tall F pes of the p X TtRr	domir Pink, E	nant o Owarf	ver Dwarf.
24.	Which A) B) C) D)	of the following. The endosper The pollination Cleavage poly Gymnosperm	m is tripl on and div vembryo	loid in i spersal ny is of	nature. of seed	s is by v	wind. rrence in se	everal	mem ¹	bers.
25.	Coeffi	cient of variation	on is							
	A)	Standard dev Mean	riation X	100	B)	Standa	Mean ırd deviati	on x 1	00	
	C)	Standard e Standard dev	rror viation	100	D)		ırd deviati dard error	v	00	
26.	The re A) B) C) D)	B) Increasing the refractive index of the medium usedC) Increasing the aperture angle								
27.	The sp A) B) C) D)	Phase contras Light field mi Transmission Scanning Elec	t microso croscopy Electron	copy / micros	scopy	on in:				
28.	Match a) b) c) d) A) C)	the following: List 1 Cinnamomum Wateria indic Ailanthus alti Lawsonia ined a-3, b-4, c-1, a-4, b-3, c-1,	a ssima rmis , d -2		 Lyth Laun Dipt 	terocarp a -2, b				
29.	Which A)	among the fol Agaricus	_	s knowi <i>Peziza</i>		throwe C)	r fungus? <i>Pencilliun</i>	п С	D)	Pylobolus

30.	Crozier formation is a characteristic feature of											
	A)	Agaricus	B)	Aman	ita	C)	Rhizopus	D)	Pencillium			
31.	Matcl	n the following	g:									
		List 1			List 2	2						
	a)	Apothecium		1. <i>Ag</i>	aricus							
	b)	Perithecium		2. <i>Ne</i>	urospo	ra						
	c)	Cleistotheci	um	3. <i>Pe</i>	ziza							
	d)	Hymenium		4. <i>Pe</i>	ncilliun	n						
	A)	a -3, b-2, c-4	l, d-1		B)	a -2,	b -3, c-4, d -1					
	C)	a -3, b-2, c-1	l, d-4		D)	a -1,	b -2, c -3, d-4					
32.	Which	h among the fo	ollowing	g is a fre	sh wate	r red al	gae?					
	A)	Pterocladia			B)	Polys	siphonia					
	C)	Batrachospe	ermum		D)	Porp	hyra					
33.	Obdip	olostemonous	stamen i	is the cha	aracteri	stic fea	ture of the fan	nily:				
	A)	Caesalpinea			B)	Ruta	ceae					
	C)	Anacardiace	ae		D)	Apoc	cynaceae					
34.			-	notypes p	ossible	in a te	est cross of AA	BBCcD	D if there is			
	-	lete dominanc		Q:		C	Trees	D)	Einlet			
	A)	Four	B)	Six		C)	Two	D)	Eight			
35.		-					-		of biological pioinformatics			
	A)	PIR	B)	SWIS	S-PRO	TC)	TrEMBL	D)	DDBJ			
36.							evelopment of	roots or	a stem while			
	it is still attached to the mother plant is known as:											
	A)	Cutting	B)	Grafti	ng	C)	Layering	D)	Budding			
37.	A pla	nt specimen ci	ted with	the orig	ginal de	scriptio	on other than the	he holoty	ype is:			
	A)	Paratype	B)	Neoty	pe	C)	Leptotype	D)	Syntype			
38.	The c	redit for the di	•			-	_					
	A)	Nirenberg a		nhaei	B)		hey and Chase					
	C)	Beadle and	Γatum		D)	Temi	in and Baltimo	re				
39.	Mann	itol is the rese	rve food	l materia	al in							
	A)	Brown algae			B)	Red a	_					
	C)	Green algae			D)	Blue	green algae					
40.		onald Pfitzer l										
	A) Reproduction in Bacillariophyta											
	B)	Algal bloom										
	C)	Flagellar mo										
	D)	Algal reserv	e food f	ormation	n							

41.	Matc	th the following:		T •	_							
	-)	List 1		List		. •						
	a)	Verticellaster			 Solanum nigrum Leucas aspera 							
	b)	Hypanthodium Coenanthium			-	•						
	c) d)	Rhipidium		3. Do 4. Fio	orstenia Tus							
	u)	Kinpiaiaiii		T. 1'10	<i>i</i> us							
	A)			B)		o-2, c -4,						
	C)	a -2, b-4, c -3, d-	1	D)	a-2, t	o -3, c -1	, d -4					
42.	In sp	orophytic incompa	tibility the	genotyp	e of the	male pa	rent is	S_1S_3 an	d that of the			
	fema	le parent is also S ₁ S	S ₄ . The pos	sible ge	notypes	of the p	rogeny	are:				
	A)	No fertile proger	ny	B)	$S_1 S_4$	$S_3 S_4$						
	C)	S_3S_4		D)	S_1S_4							
43.	Root	mean square devia	tion from 1	mean is:								
	A)	Arithmetic mean		B)		dard devi	ation					
	C)	Coefficient of va	riation	D)	Stand	dard erro	r					
44.	Whic	Which of the following genus does not belong to Marchantiales?										
	A)	Fimbriaria	O	B)		iochasma						
	C)	Cyathodium		D)	_	ombroni						
45.	The 1	physiological event	s such as p	hototror	oism, sto	omatal o	pening	. inhibit	tion of			
	-	cotyl elongation ar	-	-								
	A)	Cryptochrome		B)		hytochro	-					
	C)	Pr phytochrome		D)	-	Pfr and		tochron	nes			
46.	DNA	microarray is a co	llection of	microsc	onic Di	NA snots	s attack	ned to a	solid surfac	e		
		ch among the follow										
	1.	mRNA or gene				11			J .			
	2.	Comparative ge	_	-	_							
	3.	Chromatin immu	-									
	A)	1 & 3 only B		2 only	C)	2 & 3	only	D)	1, 2 & 3			
47.	The 1	pairing of chromoso	omes durin	g meios	is begin	at:						
	A)	Diplotene B		inesis	C)	Pachy	tene	D)	Zygotene			
	,	1	,		,	J		,	, 0			
48.		erve the following T		ed with e	nzyme	inhibitio	n and s	select th	e correct			
	ones	from the given opt	ions	K _m			V _{max}					
	1	Competitive inhibit	ion	la. Inc	rease		1h I	nchang	ed	_		
		Non-Competitive in		+	change	·d		ecrease				
	2.	competitive ii		2a. 01			20. D	2010450				
	A)	1a and 2a are con	rect									
	A)	ra and za are con	rect									

- B)
- 1a and 2a are wrong
 1a and 2a; 1b & 2b are correct
 1a and 2a; 1b & 2b are wrong C)
- Ď)

49.	Diplo	lepidous peristo	ome tee	th is a	characte	eristics	feature of -	mo	oss.
	A)	Polytricum	B)	Pogon	atum	C)	Bryum	D)	Sphagnum
50.	Amph	nigastria is a ga	ametoph	nytic ch	naracter	of	bryc	phyte.	
	A)	Porella	B)	Riccar		C)	Pellia	D)	Notothylas
51.		g fluid used in osed of osmiu on is:		_				_	
	A)	_			B)		ys fluid		
	C)	Bouin's fixativ	ve		D)	Zenke	er's fixative		
52.		egional station o	of NBPO	GR in K	Cerala is				
	A)	Palakkad			B)	Trissu			
	C)	Thiruvanantha	apuram		D)	Kozh	icode		
53.	Tritica	ale is as exampl							
	A)	Interspecific h	•		B)		specific hybi		
	C)	Intergeneric h	ybridiza	ation	D)	Interv	arietal hybri	dization	
54.	Choos	se the incorrect							
	A)	Wheat is an a							
	B)	Seedless water		-					
	C)	Gaint Napier							
	D)	Vertical resist	tance is	polygei	nic in na	ature			
55.	Match	the following:							
	,	List 1		c 11		List 2			
	a)	False Smut di		paddy		-	phaleuros		
	b)	Red rust of tea					tilaginoidear		
	c) d)	Quick wilt of Coffee rust	pepper				mileia vastai vtopthora ea		
	u)	Correc rust				4. <i>F N</i>)	ytopthora ca	psici.	
	A)	a-1, b-2, c-4,			B)	a -3, t	o-4, c -2, d -1	1	
	C)	a 2, b -1, c-4,	d -3		D)	a -4, t	o -2, c -3, d-1	1	
56.	Which	n among the foll	owing c	ondition	n/s favo	ur cross	s pollination?	?	
	A)	Dichogamy	B)	Herko	gamy	C)	Heterostyl	y D)	All the above
57.	In Ko	rperKappe theo	ry the te	erm Ka	ppe is n	neant f	or cap and K	Corper is f	or
	A)	Body	B)	Calyp	tra	C)	Carpel	D)	Calyptogen
58.	The ty	pe of cell divis	ion hap	pening	in the ri	b meris	stem Tunica	is	
	A)	Multiplane di	vision		B)	Antic	linal plane o	nly	
	C)	Periclinal plan	ne pnly		D)	All of	the above		
59.	Prome	eristem is prese	nt in						
	A)	Root apex			B)	Shoot	-		
	C)	Intercalary me	eristem		D)	Embr	yo		

60.	What is the correct binomial of the plant commonly known as White dammar?										
	A)	Vateria indi	ca		B)	Shore	ea robusta				
	C)	Dipterocarp	us turbi	natus	D)	Cana	rium strictum				
61.	Name carbo		cycle u	ised by	some m	icroorg	anism if acetate	is the	sole source of	f	
	A)	Glyoxylate p	athway	7	B)	Dicar	boxylic acid pa	thway			
	C)	Hexoe phosp	_		Ď)		oglutarate pathy	-			
62.	Stori	ed cork is prese	ent in								
	A)	Dracaena	B)	Bigno	onia	C)	Boerhaavia	D)	Eupatoriun	n	
63.	Identify the gymnosperm that possesses simple, large, petiolate, fan-shaped bilob foliage with expanded apex and narrow base resemble the Maiden-hair fern.										
	A)	Ginkgo	B)	Gneti	um	C)	Welwitschia	D)	Agathis		
64.		•		-			nic Garden wit	h its lo	cation		
	1.	Indian Botar			: Kol						
	2.	National Bot				know					
	3.	Lloyd Botan				jeeling	1001	D)	1 2 0 2		
	A)	1 & 3 only	В)	2 & 3	3 only	C)	1 & 2 only	D)	1, 2 & 3		
65.		-		ration, S			used to localize	·			
	A)	Carbohydrat	es		B)	Lipid					
	C)	Proteins			D)	Phos	phodiesterbond				
66.		er of Indian Eth th and develop					g painstaking w	vorks le	ead to		
	A)	S. K. Jain			B)	Push	pagandan				
	C)	H. Santapau			D)	Viren	dra Nath				
67.		hnobotanical pr schinensis along					eca nut, Pomegr	anate r	ind and		
	A)	Envenoming	-		B)		uering of teeth				
	C)	Lowering bl	ood pre	ssure	D)	Wou	nd healing				
68.	Flax fibres are extracted from										
	A)	Crotalaria ji	ипсеа		B)	Linur	n usitatssimum				
	C)	Agave Amer	icana		D)	Corci	horus				
69.	Whic	ch among the	followi	ing reac	ction of	f glyox	ylate cycle tak	es pla	ce inside the	е	
	Glyo	xysome during	the ger	minatio	n of fat	ty seeds	?				
	A)				o isociti	ric acid	via Cis-aconitic	Acid i	n the		
	presence of Aconitase B) Succinic acid is converted into oxaloacetic acid										
	C)	Oxaloacetic acid produced is decarboxylated in the presence of ATP to form									
	D)	phosphoenol				. 1	41 1	1.0	1 1 :		
	D)	Phosphoenol pyruvic acid is converted into the glucose and fructose phosphates									

70.	The so A) C)	ource for para rubber 1s Holostemma adakodien Hevea brasiliencis	B) D)		ropis gigantea elastica		
71.	Bagas A)	se is by-product accumulat Cellulose B) Bet	_	the retri	ieval of fron Cane sugar	m plants. D)	Flax fibres
72.		erical taxonomy, the mod hing patterns of the estimat Cladistics Phylogenetics		tionary h Phen	istory of the ta		
73.	Which A)	n among the following is an Atropine B) Res	indole al serpine	lkaloid? C)	Ephedrine	D)	Morphine
74.	The bank A) B) C) D)	enefits of micropropagation Rapid multiplication of s Multiplication of disease Cost effective process All the above	uperior cl	lones			
75.	Which 1. 2. 3. 4. 5.	of the following character Stem has a relatively simp The sporangia are borne i Spores are homosporous The development of game The development of embr	ole vascul n groups etophyte i	lar cylind (trilocula s exospo	der. ar) and form sy	ynangia	
	A) C)	1, 2 & 3 only 2, 3 & 4 only	B) D)	1, 2, 3 All the	3 & 4 only above		
76.	some	taining is a technique used of the parts of the stru Analyze the statement and Acid fuchsin is a magenta whereas basic fuchsin is a Haematoxylin turns the cother parts pink or red	cture bei chose red acid magenta	ng obsetthe cord dye that basic dy	erved thus all rect ones t is used largel ye used to stair	lowing f ly for planthe	or a clearer asma staining leus
	A) C)	1 only Both 1 & 2	B) D)	2 only Neith	er 1 nor 2		
77.	The fr A) C)	ree nuclear type of division Gamete formation Callus formation	in angios B) D)	Embr	related to the - yo formation sperm formation		
78.	The en A)	ntry of the pollen tube throu Mesogamy Chalasogamy	ugh the m B) D)	Porog			

79.	During A)	g the seed deve Tegmen	lopmen B)	t in higl Testa	-	c)	outer integume Perisperm	ent forms D)	S Pericarp
80.		nany ATP mole pheric nitrogen				Nitroge	enase enzymic	c reducti	on of
	A)	16	B)	24		C)	18	D)	32
81.	to the	pathway, the n chloro plasts nd pyruvic acid	of bur	ndle sh	eath co	ells wh	ere it is dec		• •
	A) B) C) D)	NADP ⁺ specif NADP ⁺ specif pyruvate Pi ki phophoenol p	fic mala nase	ite dehy	drogen	ase			
82.	 Which among the following statements are true in connection with the statemer "Plants are phenomenal hydraulic engineers"? Solute potential (Ψs) decreases with increasing solute concentration; a decrease in Ψs causes an increase in the total water potential. The internal water potential of a plant cell is more negative than pure wate this causes water to move from the soil into plant roots via osmosis Positive pressure inside cells results into turgor pressure, which is responsible maintaining the shape and structural features of the leaves; absence of turgor pressure leads to wilting 								
	A)	1 only	B)	2 only		C)	1 & 3 only	D)	2 & 3 only
83.		cocess of return	ing of a	n excite	ed chloi	rophyll	to its ground	state by 6	emitting a
	A) C)	Resonance Funnelling in			B) D)		escence synthesis		
84.	Dikary A) B) C) D)	yon is a nuclear Ascomycetes Phycomycetes Ascomycetes Phycomycetes	and Bas s and Ba and Phy	sidiomy asidiom ycomyc	rcetes ycetes etes	ue to so	me fungal gro	oups such	ı as:
85.		on as the resures or other bo Temporal isol Behavioural is	dy parts ation	s, so tha		g is inh Habita	•	referred	•
86.	In the A) C)	case of C4 plar Mesophyll ce Guard cells		lecarbox	xylatior B) D)		e sheath cells		
87.	Which A)	among the following Sugarcane		-			Slack cycle is Cleome	absent?	Sorghum

88.		case of CAM plants deacid in Open stomata during day tim Closed stomata during day tin Open stomata during night Closed stomata during night	e	n of malate stored in the large vacuoles						
89.	Somac A) C)	lonal variation arises as a resu Deletions and duplications Transposons	alt of cha B) D)	romosome structural changes like Gene mutations All the above						
90.		ansmembrane proteins that fun ules or ions can diffuse across Channels Pumps		s selective pores, through which mbrane is termed as Carriers Protein sheath						
91.		Blocking of electron transfer between cytochrome oxidase and O ₂ . Instantaneous hemolysis followed by sudden death								
92.	get exe	cited. The ejected electrons a	are tran	osorbs the shorter wave length of light and sferred to an electron acceptor molecule the primary electron acceptor molecule of flavin mononucleotide						
	C)	ferredoxin	D)	pheophytin						
93.	Match a) b) c) d)	the following terms with its d List 1 Light reactions Photosystem I Cytochrome bf complex Light-harvesting complex	1. Gen 2. Pow 3. Pur 4. Uses	on. List 2 erates ATP, NADPH, and O ₂ vers the formation of NADPH aps protons s resonance energy transfer to reach the etion center						
	A) C)	$a-2, b-1, c-3, d-4 \\ a-1, b-2, c-3, d-4$	B) D)	a-3, b-4, c-4, d-2 a-4, b-3, c-1, d-2						
94.	Cyclic A) B) C) D)	electron flow by P700 that p Light intensity is low The ratio of NADPH to NAD The uncoupler is present in the Plastocyanin compete with N	OP is vene plant	ery high cell.						

95.	A) B) C)	Glyoxylate is dephosphorylated to Phosphoglycolate in peroxisomes NH ₃ is produced in mitochondria									
96.	D) Which A) B) C)	among the foll Aldol condens aldehyde	owing react sation between	cions in Ca een dihydr bisphosph	alvin cy oxyace ate fron	cle is reversible tone phosphate n ribose 5-phos	(DHAP) and an			
	D)					ilose 5-phospha	ıte.				
97.	The made A) C)	ode of action of dysfunction of dysfunction ac	f complex I		dysfu	robic cellular re nction complex nction ATP syr	k III	n is through			
98.	Which I. II. III.										
	A) C)	I and II only II and III only		B) D)	I, II a I and	nd III III only					
99.	Match	the following:									
		List 1			List 2						
	a)	BLAST			_	ve method					
	b)	CLUSTAL			coring N						
	c)	PAM				y Structure pre	diction				
	d)	Chau Fasman		4. S ₁	pecificit	ty and Speed					
	A)	a-1, b-2, c-3, c		B)		-1, c -2, d - 3					
	C)	a - 4, b-3, c-2,	d-1	D)	a-1, 1	o-4, c-2, d-3					
100.	Arrang Koch.	ge the given sta	tements in the	he correct	order o	of postulates pro	posed b	oy Robert			
	I. II.	The suspected Cells from a p healthy anima	ure culture	_	-	pure culture. oathogen must o	cause di	sease in a			
	III. The suspected pathogen must be present in all cases of the disease. IV. The suspected pathogen must be reisolated from second-infected healthy hosts and shown to be the same as the original.										
	A) III, II, IV, I B) II, IV, III, I C) III, I, II, IV D) I, II, III, IV										

95.

101.	order		lution o	it first la	-		_	e theory	ın correct	
	I. III.	Overtopping Planation			II. IV.		enesis ction and curva	ation		
	A)	III, II, IV, I	B)	I, IV, 1	III, II	C)	III, I, II, IV	D)	I, III, II, IV	
102.	An ex A) C)	ample for an un Reverse trans Telomerase	-	•	nat cari B) D)		mbinase	:		
103.	Plasm A). C).	ids are said to l High copy nu Low copy nu	ımber pl	lasmids	B)	String	 gent plasmids iscuous plasmi	ds		
104.	floral produ from		consequ distinc condary iary ver	ence of t functi verticil	the inone.	nteracti a ell as th A fac	on of at least allows the diff the differentiation	three t	ypes of gene on of petals	
105.	-	Expression of a gene in tissues where it is normally not expressed or at a time not normally expected is called This situation reveals the information about A) Unblocking of gene, quantitative trait. B) Epitopic expression, gene redundancy C) Epigenetic expression, gene abundance								
106.	Identi 1. 2. 3. 4. A) C)	fy the correct stable ABA plays at IAA is probal Gibberellins at Cytokinins de 1 & 3 are correct, 3 & 4 are correct.	n import bly an e are knov elay ripe rect	tant regundogeno ndogeno vn to de	ılatory ous hor lay fru	role in monal it ripen	fruit ripening inhibitor of ripe	ening	th ripening:	
107.	,	the following TIGER ENTREZ STAG PRINT		Global DDBJ Second	l Query dary da	e relate Cross		ch Syste		
	A) C)	a-1, b-2, c-3, a-4, b-3, c-2,			B) D)		o-1, c-2, d-3 o-4, c-2, d-3			

108.	The insertion of a single viral gene related with crop protection is popularly employed in GMOs production towards resistance. Which among the following is/are examples of the above statement? A) Coat Protein (CP) & Movement Protein (MP) Mediated Protection B) Satellite RNA Mediated Resistance C) Ribozyme Mediated Resistance D) All the above									
109.	Which A) C)	among the fol Artabotrys od Uvaria corda	ecies is B) D)	is not a member of Annonaceae? Hopea micrantha Polyalthia longifolia						
110.	1,000 kcal is available in the first level?									
	A)	1,000 kcal	B)	10 kca	.I	C)	100 kcal	D)	1 kcal	
111.	Photo chemical smog is one of the major phenomena of air pollution. Photochemical smog was first reported in Los Angeles (USA). Which of the following statement/(s) related to photochemical smog are true. 1. It is formed when hydrocarbons react with NO ₂ in the presence of light 2. Oxides of nitrogen and sulphur interact with one another and with H ₂ O. 3. Peroxylacetyl nitrate is formed as result of photochemical smog								tatement/(s)	
	A)	1 & 2 only	B)	1 & 3	only	C)	1, 2 & 3	D)	1 only	
112.	Which A) C)	among the fol Passiflora gro Clematis buch	andiflord	a	n examp B) D)	Pisum	eaf tendril mo sativum rus sativus	odificatio	n?	
113.	Which 1. 2. 3. 4. A) C)	Animals cannot get their phosphorus from eating plants and algae. Fertilizer use has affected the global phosphorus budget. 1, 2, 3 and 4 are correct B) 1 and 2 are correct								
114.	Identify the first eukaryote whose genome is completely sequenced:									
11	A) Pneumocystis carinii B) Saccharomyces cerevisiae									
	C)	Tolypocladiu		ım	D)		sporium herb			
115.	Orchic A) C)	ls are ornamen Cypripedium Rossioglossur	calceolu	ıs	e the bin B) D)	Gramn	of Lady's slip natophyllum obium crume	speciosu		

116.	Which of the following protein has quaternary structure?										
	A)	Chymotryps	sin	B)	Haer	noglobin					
	C)	Insulin		D)		globin					
117.	Citrate stimulates fatty acid synthesis by all of the following except for.										
	A)	allosterically activating acetylCoAcarboxylase.									
	B)	providing a mechanism to transport acetyl CoA from the mitochondria to the cytosol.									
	C)	participating in a pathway that ultimately produces CO ₂ and NADPH in the cytosol.									
	D)	participating in the production of ATP.									
118.	Base excision repair:										
	A)	is used only for bases that have been deaminated.									
	B)	uses enzymes called DNA glycosylases to generate an abasic sugar site.									
	C)	removes about 10–15 nucleotides.									
	D)	recognizes	a bulky	lesion.							
119.		Which of the following statement regarding sigma factor of prokaryotic RNA									
		merase is not correct?									
	A)	is part of the core enzyme.									
	B)	binds the antibiotic rifampicin.									
	C)	is inhibited by a amanitin.									
	D)	specifically recognizes promoter sites.									
120.		Select the correct statements in connection with the wild life sanctuaries of Kerala:									
	1.	Periyar and Parambikulam Wildlife Sanctuaries has been selected and									
	2	declared as Tiger Reserves									
	2.	Neyyar Wildlife Sanctuary is a part of Agasthyamala biosphere reserve									
	3.	Chinnar Wildlife Sanctuary in Idukki is home to the Great Grizzled Squirrel of India									
	A)	1, 2 & 3	B)	1 & 3 only	C)	2 & 3 only	D)	1 & 2 only			