A ## **20203** 120 MINUTES | 1. | A) | Taxus | B) | Gnetum | C) | Ephedra | D) | Pinus | |-----|-------------------------------|---|------------------------------------|--|------------------------------|--------------------------------------|----------------|-------------------| | 2. | Which A) | ch of the follow
Pili
Axial filame | _ | aving rings and
B)
D) | Fimb | - | | | | 3. | Hfr b
A)
B)
C)
D) | _ | ansfer of
f F plasm
of Plasm | f F plasmid | | | | | | 4. | Amo
A) | ng the followin
Virus | ng exam
B) | ples, alone
Prion | e share p | properties of (
Viroid | Chaperon
D) | es.
Retrovirus | | 5. | In a (i) (ii) | one fruit dra | wn fron | are red and then the bunch at run the bunch at | andom | is red | | probability that | | | A) | 1/2 & 3/7 | B) | 1/4 & 2/5 | C) | 1/3 & 3/7 | D) | 1/3 & 2/7 | | 6. | A)
C) | Mollecutes Gymnosperi | ns | B)
D) | | osperms | | 0 | | 7. | A)
C) | Ulva
Sargasssum | | g possess isomo
B)
D) | Lami | apiodipontic i
inaria
siphonia | ille cycle | ? | | 8. | Irish
A)
C) | moss is:
Porella
Funaria | | B)
D) | | vicinia
ndruscrispus | | | | 9. | Evolu
A)
C) | ution of chloro
Bold and W
Lee | - | the major criter
B)
D) | ria in the
Rour
Fritse | nd | n propose | ed by: | | 10. | 1.
2.
3. | Mature arch
A largest eg
Neck canal | egoniun
g
cells are | | cells | _ | - | | | | A) | 1 & 2 only | В) | 2 & 3 only | C) | 2 only | D) | 1, 2 & 3 | | 11. | Phen | otypic and genotypic F2 | | is the sam | e in: | | | | |-----|------------------------------|---|---|-------------|-----------------|---------|-----------------|----| | | A) | Intermediate dominar | ice B) | Co do | minance | | | | | | C) | Overdominance | D) | Domir | nant epistasis | | | | | 12. | Name | e the place in India know | | mine of l | Liverworts: | | | | | | A) | Eastern Himalaya | B) | Weste | rn Himalaya | | | | | | C) | Western Ghats | D) | Sunde | rbans | | | | | 13. | Meno
A)
B)
C)
D) | del, after his experiment
Drosophila and Neuro
Honey bee and Neuro
Heiracium and honey
Drosophila and honey | ospora
ospora
bee | ı pea, con | tinued his exp | erimen | ts with: | | | 14. | | development of a spo
mediate formation and fo | ertilization of | • | is | | without the | | | | A) | Apospory B) | Apogamy | C) | Recurvation | D) | None of the | se | | 15. | | is the most important in id of pith: | nternal comp | onent of p | olant body. Ch | oose a | stele which is | | | | A) | Siphonostele B) | Haplostele | C) | Solenostele | D) | Dictyostele | | | 16. | In the A) B) C) D) | Phloem present inner Phloem is surrounded Phloem present on bo Phloem is present out | side of xyler
by xylem
th sides of xy | n
ylem | | | | | | 17. | The t | ype of spore developme | nt on Marsile | ea is | | | | | | | A) | Eusporangiate type | B) | Polysp | orangiate type | • | | | | | C) | Leptosporangiate type | e D) | Arche | goniate type | | | | | 18. | | ify the causative organiceads to loss of yield: | sm of Coffee | e rust a de | vastating folia | r disea | se of the plant | | | | A) | Hemileia vastatrix | B) | | lerma philipp | ii | | | | | C) | Gibberella stilboide | s D) | Armil | laria mellea | | | | | 19. | The p | pollen grains of Pinus at | the time its r | release is | | | | | | | A) | One-nucleate | B) | Two n | ucleate | | | | | | C) | Three nucleate | D) | Four n | ucleate | | | | | 20. | Whic | ch among the following | is a unique fe | eature of C | Gram-positive | bacteri | a? | | | | A) | Outer membrane | B) | | protein | | | | | | C) | Thin peptidoglycan co | ell wall D) | Teicho | oic acids | | | | | 21. | | da Balsam is obtained fi | | | | | | | | | A) | Agathis B) | Araucaria | C) | Pinus | D) | Abies | | | 22. | Which A) | among the fol RAPD | | s a codo
AFLP | ominan | t marker
C) | r?
STMS | Б |)) | AP PCR | |-----|--------------------------------|--|-------------------------------------|----------------------------------|--|---------------------|---|------------------|------------------|------------| | 23. | heteroz
If a cro | pdragon the Rezygous productors between two Prink in the rate TtRR X TtRr | ing Pink
o shapdr | flowers
ageons | s. Tall p
produc | olant is c | completely
Red, Tall F
pes of the p
X TtRr | domir
Pink, E | nant o
Owarf | ver Dwarf. | | 24. | Which A) B) C) D) | of the following. The endosper The pollination Cleavage poly Gymnosperm | m is tripl
on and div
vembryo | loid in i
spersal
ny is of | nature. of seed | s is by v | wind.
rrence in se | everal | mem ¹ | bers. | | 25. | Coeffi | cient of variation | on is | | | | | | | | | | A) | Standard dev
Mean | riation
X | 100 | B) | Standa | Mean
ırd deviati | on x 1 | 00 | | | | C) | Standard e
Standard dev | rror
viation | 100 | D) | | ırd deviati
dard error | v | 00 | | | 26. | The re A) B) C) D) | B) Increasing the refractive index of the medium usedC) Increasing the aperture angle | | | | | | | | | | 27. | The sp
A)
B)
C)
D) | Phase contras
Light field mi
Transmission
Scanning Elec | t microso
croscopy
Electron | copy
/
micros | scopy | on in: | | | | | | 28. | Match a) b) c) d) A) C) | the following: List 1 Cinnamomum Wateria indic Ailanthus alti Lawsonia ined a-3, b-4, c-1, a-4, b-3, c-1, | a
ssima
rmis
, d -2 | | Lyth Laun Dipt | terocarp
a -2, b | | | | | | 29. | Which A) | among the fol Agaricus | _ | s knowi
<i>Peziza</i> | | throwe
C) | r fungus?
<i>Pencilliun</i> | п С | D) | Pylobolus | | 30. | Crozier formation is a characteristic feature of | | | | | | | | | | | | |-----|---|------------------|----------|--------------|----------|----------|-------------------|-----------|---------------------------------|--|--|--| | | A) | Agaricus | B) | Aman | ita | C) | Rhizopus | D) | Pencillium | | | | | 31. | Matcl | n the following | g: | | | | | | | | | | | | | List 1 | | | List 2 | 2 | | | | | | | | | a) | Apothecium | | 1. <i>Ag</i> | aricus | | | | | | | | | | b) | Perithecium | | 2. <i>Ne</i> | urospo | ra | | | | | | | | | c) | Cleistotheci | um | 3. <i>Pe</i> | ziza | | | | | | | | | | d) | Hymenium | | 4. <i>Pe</i> | ncilliun | n | | | | | | | | | A) | a -3, b-2, c-4 | l, d-1 | | B) | a -2, | b -3, c-4, d -1 | | | | | | | | C) | a -3, b-2, c-1 | l, d-4 | | D) | a -1, | b -2, c -3, d-4 | | | | | | | 32. | Which | h among the fo | ollowing | g is a fre | sh wate | r red al | gae? | | | | | | | | A) | Pterocladia | | | B) | Polys | siphonia | | | | | | | | C) | Batrachospe | ermum | | D) | Porp | hyra | | | | | | | 33. | Obdip | olostemonous | stamen i | is the cha | aracteri | stic fea | ture of the fan | nily: | | | | | | | A) | Caesalpinea | | | B) | Ruta | ceae | | | | | | | | C) | Anacardiace | ae | | D) | Apoc | cynaceae | | | | | | | 34. | | | - | notypes p | ossible | in a te | est cross of AA | BBCcD | D if there is | | | | | | - | lete dominanc | | Q: | | C | Trees | D) | Einlet | | | | | | A) | Four | B) | Six | | C) | Two | D) | Eight | | | | | 35. | | - | | | | | - | | of biological
pioinformatics | | | | | | A) | PIR | B) | SWIS | S-PRO | TC) | TrEMBL | D) | DDBJ | | | | | 36. | | | | | | | evelopment of | roots or | a stem while | | | | | | it is still attached to the mother plant is known as: | | | | | | | | | | | | | | A) | Cutting | B) | Grafti | ng | C) | Layering | D) | Budding | | | | | 37. | A pla | nt specimen ci | ted with | the orig | ginal de | scriptio | on other than the | he holoty | ype is: | | | | | | A) | Paratype | B) | Neoty | pe | C) | Leptotype | D) | Syntype | | | | | 38. | The c | redit for the di | • | | | - | _ | | | | | | | | A) | Nirenberg a | | nhaei | B) | | hey and Chase | | | | | | | | C) | Beadle and | Γatum | | D) | Temi | in and Baltimo | re | | | | | | 39. | Mann | itol is the rese | rve food | l materia | al in | | | | | | | | | | A) | Brown algae | | | B) | Red a | _ | | | | | | | | C) | Green algae | | | D) | Blue | green algae | | | | | | | 40. | | onald Pfitzer l | | | | | | | | | | | | | A) Reproduction in Bacillariophyta | | | | | | | | | | | | | | B) | Algal bloom | | | | | | | | | | | | | C) | Flagellar mo | | | | | | | | | | | | | D) | Algal reserv | e food f | ormation | n | | | | | | | | | 41. | Matc | th the following: | | T • | _ | | | | | | | | |-----|----------|--|--------------------------|-----------------|---|------------|------------------|-------------|---------------|---|--|--| | | -) | List 1 | | List | | . • | | | | | | | | | a) | Verticellaster | | | Solanum nigrum Leucas aspera | | | | | | | | | | b) | Hypanthodium
Coenanthium | | | - | • | | | | | | | | | c)
d) | Rhipidium | | 3. Do
4. Fio | orstenia
Tus | | | | | | | | | | u) | Kinpiaiaiii | | T. 1'10 | <i>i</i> us | | | | | | | | | | A) | | | B) | | o-2, c -4, | | | | | | | | | C) | a -2, b-4, c -3, d- | 1 | D) | a-2, t | o -3, c -1 | , d -4 | | | | | | | 42. | In sp | orophytic incompa | tibility the | genotyp | e of the | male pa | rent is | S_1S_3 an | d that of the | | | | | | fema | le parent is also S ₁ S | S ₄ . The pos | sible ge | notypes | of the p | rogeny | are: | | | | | | | A) | No fertile proger | ny | B) | $S_1 S_4$ | $S_3 S_4$ | | | | | | | | | C) | S_3S_4 | | D) | S_1S_4 | | | | | | | | | 43. | Root | mean square devia | tion from 1 | mean is: | | | | | | | | | | | A) | Arithmetic mean | | B) | | dard devi | ation | | | | | | | | C) | Coefficient of va | riation | D) | Stand | dard erro | r | | | | | | | 44. | Whic | Which of the following genus does not belong to Marchantiales? | | | | | | | | | | | | | A) | Fimbriaria | O | B) | | iochasma | | | | | | | | | C) | Cyathodium | | D) | _ | ombroni | | | | | | | | 45. | The 1 | physiological event | s such as p | hototror | oism, sto | omatal o | pening | . inhibit | tion of | | | | | | - | cotyl elongation ar | - | - | | | | | | | | | | | A) | Cryptochrome | | B) | | hytochro | - | | | | | | | | C) | Pr phytochrome | | D) | - | Pfr and | | tochron | nes | | | | | 46. | DNA | microarray is a co | llection of | microsc | onic Di | NA snots | s attack | ned to a | solid surfac | e | | | | | | ch among the follow | | | | | | | | | | | | | 1. | mRNA or gene | | | | 11 | | | J . | | | | | | 2. | Comparative ge | _ | - | _ | | | | | | | | | | 3. | Chromatin immu | - | | | | | | | | | | | | A) | 1 & 3 only B | | 2 only | C) | 2 & 3 | only | D) | 1, 2 & 3 | | | | | 47. | The 1 | pairing of chromoso | omes durin | g meios | is begin | at: | | | | | | | | | A) | Diplotene B | | inesis | C) | Pachy | tene | D) | Zygotene | | | | | | , | 1 | , | | , | J | | , | , 0 | | | | | 48. | | erve the following T | | ed with e | nzyme | inhibitio | n and s | select th | e correct | | | | | | ones | from the given opt | ions | K _m | | | V _{max} | | | | | | | | 1 | Competitive inhibit | ion | la. Inc | rease | | 1h I | nchang | ed | _ | | | | | | Non-Competitive in | | + | change | ·d | | ecrease | | | | | | | 2. | competitive ii | | 2a. 01 | | | 20. D | 2010450 | | | | | | | A) | 1a and 2a are con | rect | | | | | | | | | | | | A) | ra and za are con | rect | | | | | | | | | | - B) - 1a and 2a are wrong 1a and 2a; 1b & 2b are correct 1a and 2a; 1b & 2b are wrong C) - Ď) | 49. | Diplo | lepidous peristo | ome tee | th is a | characte | eristics | feature of - | mo | oss. | |-----|----------|--------------------------------------|-----------|----------|-----------|-----------------|-------------------------------|-------------|---------------| | | A) | Polytricum | B) | Pogon | atum | C) | Bryum | D) | Sphagnum | | 50. | Amph | nigastria is a ga | ametoph | nytic ch | naracter | of | bryc | phyte. | | | | A) | Porella | B) | Riccar | | C) | Pellia | D) | Notothylas | | 51. | | g fluid used in osed of osmiu on is: | | _ | | | | _ | | | | A) | _ | | | B) | | ys fluid | | | | | C) | Bouin's fixativ | ve | | D) | Zenke | er's fixative | | | | 52. | | egional station o | of NBPO | GR in K | Cerala is | | | | | | | A) | Palakkad | | | B) | Trissu | | | | | | C) | Thiruvanantha | apuram | | D) | Kozh | icode | | | | 53. | Tritica | ale is as exampl | | | | | | | | | | A) | Interspecific h | • | | B) | | specific hybi | | | | | C) | Intergeneric h | ybridiza | ation | D) | Interv | arietal hybri | dization | | | 54. | Choos | se the incorrect | | | | | | | | | | A) | Wheat is an a | | | | | | | | | | B) | Seedless water | | - | | | | | | | | C) | Gaint Napier | | | | | | | | | | D) | Vertical resist | tance is | polygei | nic in na | ature | | | | | 55. | Match | the following: | | | | | | | | | | , | List 1 | | c 11 | | List 2 | | | | | | a) | False Smut di | | paddy | | - | phaleuros | | | | | b) | Red rust of tea | | | | | tilaginoidear | | | | | c)
d) | Quick wilt of Coffee rust | pepper | | | | mileia vastai
vtopthora ea | | | | | u) | Correc rust | | | | 4. <i>F N</i>) | ytopthora ca | psici. | | | | A) | a-1, b-2, c-4, | | | B) | a -3, t | o-4, c -2, d -1 | 1 | | | | C) | a 2, b -1, c-4, | d -3 | | D) | a -4, t | o -2, c -3, d-1 | 1 | | | 56. | Which | n among the foll | owing c | ondition | n/s favo | ur cross | s pollination? | ? | | | | A) | Dichogamy | B) | Herko | gamy | C) | Heterostyl | y D) | All the above | | 57. | In Ko | rperKappe theo | ry the te | erm Ka | ppe is n | neant f | or cap and K | Corper is f | or | | | A) | Body | B) | Calyp | tra | C) | Carpel | D) | Calyptogen | | 58. | The ty | pe of cell divis | ion hap | pening | in the ri | b meris | stem Tunica | is | | | | A) | Multiplane di | vision | | B) | Antic | linal plane o | nly | | | | C) | Periclinal plan | ne pnly | | D) | All of | the above | | | | 59. | Prome | eristem is prese | nt in | | | | | | | | | A) | Root apex | | | B) | Shoot | - | | | | | C) | Intercalary me | eristem | | D) | Embr | yo | | | | 60. | What is the correct binomial of the plant commonly known as White dammar? | | | | | | | | | | | |-----|---|--|----------|-----------|-----------|----------|------------------|------------|----------------|---|--| | | A) | Vateria indi | ca | | B) | Shore | ea robusta | | | | | | | C) | Dipterocarp | us turbi | natus | D) | Cana | rium strictum | | | | | | 61. | Name
carbo | | cycle u | ised by | some m | icroorg | anism if acetate | is the | sole source of | f | | | | A) | Glyoxylate p | athway | 7 | B) | Dicar | boxylic acid pa | thway | | | | | | C) | Hexoe phosp | _ | | Ď) | | oglutarate pathy | - | | | | | 62. | Stori | ed cork is prese | ent in | | | | | | | | | | | A) | Dracaena | B) | Bigno | onia | C) | Boerhaavia | D) | Eupatoriun | n | | | 63. | Identify the gymnosperm that possesses simple, large, petiolate, fan-shaped bilob foliage with expanded apex and narrow base resemble the Maiden-hair fern. | | | | | | | | | | | | | A) | Ginkgo | B) | Gneti | um | C) | Welwitschia | D) | Agathis | | | | 64. | | • | | - | | | nic Garden wit | h its lo | cation | | | | | 1. | Indian Botar | | | : Kol | | | | | | | | | 2. | National Bot | | | | know | | | | | | | | 3. | Lloyd Botan | | | | jeeling | 1001 | D) | 1 2 0 2 | | | | | A) | 1 & 3 only | В) | 2 & 3 | 3 only | C) | 1 & 2 only | D) | 1, 2 & 3 | | | | 65. | | - | | ration, S | | | used to localize | · | | | | | | A) | Carbohydrat | es | | B) | Lipid | | | | | | | | C) | Proteins | | | D) | Phos | phodiesterbond | | | | | | 66. | | er of Indian Eth
th and develop | | | | | g painstaking w | vorks le | ead to | | | | | A) | S. K. Jain | | | B) | Push | pagandan | | | | | | | C) | H. Santapau | | | D) | Viren | dra Nath | | | | | | 67. | | hnobotanical pr
schinensis along | | | | | eca nut, Pomegr | anate r | ind and | | | | | A) | Envenoming | - | | B) | | uering of teeth | | | | | | | C) | Lowering bl | ood pre | ssure | D) | Wou | nd healing | | | | | | 68. | Flax fibres are extracted from | | | | | | | | | | | | | A) | Crotalaria ji | ипсеа | | B) | Linur | n usitatssimum | | | | | | | C) | Agave Amer | icana | | D) | Corci | horus | | | | | | 69. | Whic | ch among the | followi | ing reac | ction of | f glyox | ylate cycle tak | es pla | ce inside the | е | | | | Glyo | xysome during | the ger | minatio | n of fat | ty seeds | ? | | | | | | | A) | | | | o isociti | ric acid | via Cis-aconitic | Acid i | n the | | | | | presence of Aconitase B) Succinic acid is converted into oxaloacetic acid | | | | | | | | | | | | | C) | Oxaloacetic acid produced is decarboxylated in the presence of ATP to form | | | | | | | | | | | | D) | phosphoenol | | | | . 1 | 41 1 | 1.0 | 1 1 : | | | | | D) | Phosphoenol pyruvic acid is converted into the glucose and fructose phosphates | | | | | | | | | | | 70. | The so A) C) | ource for para rubber 1s
Holostemma adakodien
Hevea brasiliencis | B)
D) | | ropis gigantea
elastica | | | |-----|----------------------|---|---|--------------------------------------|---|----------------------------|---------------------------------------| | 71. | Bagas
A) | se is by-product accumulat
Cellulose B) Bet | _ | the retri | ieval of fron
Cane sugar | m plants.
D) | Flax fibres | | 72. | | erical taxonomy, the mod
hing patterns of the estimat
Cladistics
Phylogenetics | | tionary h
Phen | istory of the ta | | | | 73. | Which
A) | n among the following is an
Atropine B) Res | indole al
serpine | lkaloid?
C) | Ephedrine | D) | Morphine | | 74. | The bank A) B) C) D) | enefits of micropropagation
Rapid multiplication of s
Multiplication of disease
Cost effective process
All the above | uperior cl | lones | | | | | 75. | Which 1. 2. 3. 4. 5. | of the following character
Stem has a relatively simp
The sporangia are borne i
Spores are homosporous
The development of game
The development of embr | ole vascul
n groups
etophyte i | lar cylind
(trilocula
s exospo | der.
ar) and form sy | ynangia | | | | A)
C) | 1, 2 & 3 only
2, 3 & 4 only | B)
D) | 1, 2, 3
All the | 3 & 4 only
above | | | | 76. | some | taining is a technique used of the parts of the stru Analyze the statement and Acid fuchsin is a magenta whereas basic fuchsin is a Haematoxylin turns the cother parts pink or red | cture bei
chose
red acid
magenta | ng obsetthe cord dye that basic dy | erved thus all
rect ones
t is used largel
ye used to stair | lowing f
ly for planthe | or a clearer
asma staining
leus | | | A)
C) | 1 only
Both 1 & 2 | B)
D) | 2 only
Neith | er 1 nor 2 | | | | 77. | The fr
A)
C) | ree nuclear type of division
Gamete formation
Callus formation | in angios
B)
D) | Embr | related to the -
yo formation
sperm formation | | | | 78. | The en A) | ntry of the pollen tube throu
Mesogamy
Chalasogamy | ugh the m
B)
D) | Porog | | | | | 79. | During
A) | g the seed deve
Tegmen | lopmen
B) | t in higl
Testa | - | c) | outer integume
Perisperm | ent forms
D) | S
Pericarp | |-----|--|--|--------------------------------|------------------------------|--------------------------|--------------------|-----------------------------|-----------------|---------------| | 80. | | nany ATP mole
pheric nitrogen | | | | Nitroge | enase enzymic | c reducti | on of | | | A) | 16 | B) | 24 | | C) | 18 | D) | 32 | | 81. | to the | pathway, the n
chloro plasts
nd pyruvic acid | of bur | ndle sh | eath co | ells wh | ere it is dec | | • • | | | A)
B)
C)
D) | NADP ⁺ specif
NADP ⁺ specif
pyruvate Pi ki
phophoenol p | fic mala
nase | ite dehy | drogen | ase | | | | | 82. | Which among the following statements are true in connection with the statemer "Plants are phenomenal hydraulic engineers"? Solute potential (Ψs) decreases with increasing solute concentration; a decrease in Ψs causes an increase in the total water potential. The internal water potential of a plant cell is more negative than pure wate this causes water to move from the soil into plant roots via osmosis Positive pressure inside cells results into turgor pressure, which is responsible maintaining the shape and structural features of the leaves; absence of turgor pressure leads to wilting | | | | | | | | | | | A) | 1 only | B) | 2 only | | C) | 1 & 3 only | D) | 2 & 3 only | | 83. | | cocess of return | ing of a | n excite | ed chloi | rophyll | to its ground | state by 6 | emitting a | | | A)
C) | Resonance
Funnelling in | | | B)
D) | | escence
synthesis | | | | 84. | Dikary
A)
B)
C)
D) | yon is a nuclear
Ascomycetes
Phycomycetes
Ascomycetes
Phycomycetes | and Bas
s and Ba
and Phy | sidiomy
asidiom
ycomyc | rcetes
ycetes
etes | ue to so | me fungal gro | oups such | ı as: | | 85. | | on as the resures or other bo
Temporal isol
Behavioural is | dy parts
ation | s, so tha | | g is inh
Habita | • | referred | • | | 86. | In the A) C) | case of C4 plar
Mesophyll ce
Guard cells | | lecarbox | xylatior
B)
D) | | e sheath cells | | | | 87. | Which A) | among the following Sugarcane | | - | | | Slack cycle is Cleome | absent? | Sorghum | | 88. | | case of CAM plants deacid
in
Open stomata during day tim
Closed stomata during day tin
Open stomata during night
Closed stomata during night | e | n of malate stored in the large vacuoles | | | | | | | |-----|--------------------------------|---|---------------------------------------|--|--|--|--|--|--|--| | 89. | Somac
A)
C) | lonal variation arises as a resu
Deletions and duplications
Transposons | alt of cha
B)
D) | romosome structural changes like Gene mutations All the above | | | | | | | | 90. | | ansmembrane proteins that fun
ules or ions can diffuse across
Channels
Pumps | | s selective pores, through which mbrane is termed as Carriers Protein sheath | | | | | | | | 91. | | Blocking of electron transfer between cytochrome oxidase and O ₂ . Instantaneous hemolysis followed by sudden death | | | | | | | | | | 92. | get exe | cited. The ejected electrons a | are tran | osorbs the shorter wave length of light and sferred to an electron acceptor molecule the primary electron acceptor molecule of flavin mononucleotide | | | | | | | | | C) | ferredoxin | D) | pheophytin | | | | | | | | 93. | Match a) b) c) d) | the following terms with its d List 1 Light reactions Photosystem I Cytochrome bf complex Light-harvesting complex | 1. Gen
2. Pow
3. Pur
4. Uses | on. List 2 erates ATP, NADPH, and O ₂ vers the formation of NADPH aps protons s resonance energy transfer to reach the etion center | | | | | | | | | A)
C) | $a-2, b-1, c-3, d-4 \\ a-1, b-2, c-3, d-4$ | B)
D) | a-3, b-4, c-4, d-2
a-4, b-3, c-1, d-2 | | | | | | | | 94. | Cyclic
A)
B)
C)
D) | electron flow by P700 that p
Light intensity is low
The ratio of NADPH to NAD
The uncoupler is present in the
Plastocyanin compete with N | OP is vene plant | ery high
cell. | | | | | | | | 95. | A)
B)
C) | Glyoxylate is dephosphorylated to Phosphoglycolate in peroxisomes NH ₃ is produced in mitochondria | | | | | | | | | | |------|--|---|-------------------------------|--|--------------------------------|---|----------|--------------|--|--|--| | 96. | D) Which A) B) C) | among the foll
Aldol condens
aldehyde | owing react
sation between | cions in Ca
een dihydr
bisphosph | alvin cy
oxyace
ate fron | cle is reversible tone phosphate n ribose 5-phos | (DHAP |) and an | | | | | | D) | | | | | ilose 5-phospha | ıte. | | | | | | 97. | The made A) C) | ode of action of
dysfunction of
dysfunction ac | f complex I | | dysfu | robic cellular re
nction complex
nction ATP syr | k III | n is through | | | | | 98. | Which I. II. III. | | | | | | | | | | | | | A)
C) | I and II only
II and III only | | B)
D) | I, II a
I and | nd III
III only | | | | | | | 99. | Match | the following: | | | | | | | | | | | | | List 1 | | | List 2 | | | | | | | | | a) | BLAST | | | _ | ve method | | | | | | | | b) | CLUSTAL | | | coring N | | | | | | | | | c) | PAM | | | | y Structure pre | diction | | | | | | | d) | Chau Fasman | | 4. S ₁ | pecificit | ty and Speed | | | | | | | | A) | a-1, b-2, c-3, c | | B) | | -1, c -2, d - 3 | | | | | | | | C) | a - 4, b-3, c-2, | d-1 | D) | a-1, 1 | o-4, c-2, d-3 | | | | | | | 100. | Arrang
Koch. | ge the given sta | tements in the | he correct | order o | of postulates pro | posed b | oy Robert | | | | | | I.
II. | The suspected Cells from a p healthy anima | ure culture | _ | - | pure culture.
oathogen must o | cause di | sease in a | | | | | | III. The suspected pathogen must be present in all cases of the disease. IV. The suspected pathogen must be reisolated from second-infected healthy hosts and shown to be the same as the original. | | | | | | | | | | | | | A) III, II, IV, I B) II, IV, III, I C) III, I, II, IV D) I, II, III, IV | | | | | | | | | | | 95. | 101. | order | | lution o | it first la | - | | _ | e theory | ın correct | | |------|--------------------------|---|---|---|-------------------------------|-------------------------------------|--|----------|------------------------------|--| | | I.
III. | Overtopping Planation | | | II.
IV. | | enesis
ction and curva | ation | | | | | A) | III, II, IV, I | B) | I, IV, 1 | III, II | C) | III, I, II, IV | D) | I, III, II, IV | | | 102. | An ex
A)
C) | ample for an un
Reverse trans
Telomerase | - | • | nat cari
B)
D) | | mbinase | : | | | | 103. | Plasm
A).
C). | ids are said to l
High copy nu
Low copy nu | ımber pl | lasmids | B) | String |
gent plasmids
iscuous plasmi | ds | | | | 104. | floral
produ
from | | consequ
distinc
condary
iary ver | ence of
t functi
verticil | the inone. | nteracti
a
ell as th
A fac | on of at least
allows the diff
the differentiation | three t | ypes of gene
on of petals | | | 105. | - | Expression of a gene in tissues where it is normally not expressed or at a time not normally expected is called This situation reveals the information about A) Unblocking of gene, quantitative trait. B) Epitopic expression, gene redundancy C) Epigenetic expression, gene abundance | | | | | | | | | | 106. | Identi 1. 2. 3. 4. A) C) | fy the correct stable ABA plays at IAA is probal Gibberellins at Cytokinins de 1 & 3 are correct, 3 & 4 are correct. | n import
bly an e
are knov
elay ripe
rect | tant regundogeno
ndogeno
vn to de | ılatory
ous hor
lay fru | role in monal it ripen | fruit ripening inhibitor of ripe | ening | th ripening: | | | 107. | , | the following
TIGER
ENTREZ
STAG
PRINT | | Global
DDBJ
Second | l Query
dary da | e relate
Cross | | ch Syste | | | | | A)
C) | a-1, b-2, c-3,
a-4, b-3, c-2, | | | B)
D) | | o-1, c-2, d-3
o-4, c-2, d-3 | | | | | 108. | The insertion of a single viral gene related with crop protection is popularly employed in GMOs production towards resistance. Which among the following is/are examples of the above statement? A) Coat Protein (CP) & Movement Protein (MP) Mediated Protection B) Satellite RNA Mediated Resistance C) Ribozyme Mediated Resistance D) All the above | | | | | | | | | | |------|---|---|----------------------|---|-----------------------|-------|--|------------|--------------|--| | 109. | Which A) C) | among the fol
Artabotrys od
Uvaria corda | ecies is
B)
D) | is not a member of Annonaceae? Hopea micrantha Polyalthia longifolia | | | | | | | | 110. | 1,000 kcal is available in the first level? | | | | | | | | | | | | A) | 1,000 kcal | B) | 10 kca | .I | C) | 100 kcal | D) | 1 kcal | | | 111. | Photo chemical smog is one of the major phenomena of air pollution. Photochemical smog was first reported in Los Angeles (USA). Which of the following statement/(s) related to photochemical smog are true. 1. It is formed when hydrocarbons react with NO ₂ in the presence of light 2. Oxides of nitrogen and sulphur interact with one another and with H ₂ O. 3. Peroxylacetyl nitrate is formed as result of photochemical smog | | | | | | | | tatement/(s) | | | | A) | 1 & 2 only | B) | 1 & 3 | only | C) | 1, 2 & 3 | D) | 1 only | | | 112. | Which A) C) | among the fol
Passiflora gro
Clematis buch | andiflord | a | n examp
B)
D) | Pisum | eaf tendril mo
sativum
rus sativus | odificatio | n? | | | 113. | Which 1. 2. 3. 4. A) C) | Animals cannot get their phosphorus from eating plants and algae. Fertilizer use has affected the global phosphorus budget. 1, 2, 3 and 4 are correct B) 1 and 2 are correct | | | | | | | | | | 114. | Identify the first eukaryote whose genome is completely sequenced: | | | | | | | | | | | 11 | A) Pneumocystis carinii B) Saccharomyces cerevisiae | | | | | | | | | | | | C) | Tolypocladiu | | ım | D) | | sporium herb | | | | | 115. | Orchic
A)
C) | ls are ornamen
Cypripedium
Rossioglossur | calceolu | ıs | e the bin
B)
D) | Gramn | of Lady's slip
natophyllum
obium crume | speciosu | | | | 116. | Which of the following protein has quaternary structure? | | | | | | | | | | | |------|---|---|---------|------------|------|------------|----|------------|--|--|--| | | A) | Chymotryps | sin | B) | Haer | noglobin | | | | | | | | C) | Insulin | | D) | | globin | | | | | | | 117. | Citrate stimulates fatty acid synthesis by all of the following except for. | | | | | | | | | | | | | A) | allosterically activating acetylCoAcarboxylase. | | | | | | | | | | | | B) | providing a mechanism to transport acetyl CoA from the mitochondria to the cytosol. | | | | | | | | | | | | C) | participating in a pathway that ultimately produces CO ₂ and NADPH in the cytosol. | | | | | | | | | | | | D) | participating in the production of ATP. | | | | | | | | | | | 118. | Base excision repair: | | | | | | | | | | | | | A) | is used only for bases that have been deaminated. | | | | | | | | | | | | B) | uses enzymes called DNA glycosylases to generate an abasic sugar site. | | | | | | | | | | | | C) | removes about 10–15 nucleotides. | | | | | | | | | | | | D) | recognizes | a bulky | lesion. | | | | | | | | | 119. | | Which of the following statement regarding sigma factor of prokaryotic RNA | | | | | | | | | | | | | merase is not correct? | | | | | | | | | | | | A) | is part of the core enzyme. | | | | | | | | | | | | B) | binds the antibiotic rifampicin. | | | | | | | | | | | | C) | is inhibited by a amanitin. | | | | | | | | | | | | D) | specifically recognizes promoter sites. | | | | | | | | | | | 120. | | Select the correct statements in connection with the wild life sanctuaries of Kerala: | | | | | | | | | | | | 1. | Periyar and Parambikulam Wildlife Sanctuaries has been selected and | | | | | | | | | | | | 2 | declared as Tiger Reserves | | | | | | | | | | | | 2. | Neyyar Wildlife Sanctuary is a part of Agasthyamala biosphere reserve | | | | | | | | | | | | 3. | Chinnar Wildlife Sanctuary in Idukki is home to the Great Grizzled Squirrel of India | | | | | | | | | | | | A) | 1, 2 & 3 | B) | 1 & 3 only | C) | 2 & 3 only | D) | 1 & 2 only |