

21731

120 MINUTES

1.	Consi	der the two rea	l valued	l functio	ns defi	ned on F	$g: f(r) = \int 0, if$	x is irr	ational		
1.		Consider the two real valued functions defined on R: $f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ 1, & \text{if } x \text{ is rational} \end{cases}$ and									
	g(x),	g(x), which is a continuous function. Then in the context of Riemann integrability:									
	A)	,									
	B)	f(x) is not in	_	_		_					
	C) D)	g(x) is not in Both are not if	_	-	(x) is in	itegrabio	2				
	D)	Dom are not	megrae	,10							
2.		a sequence is g		be conve	ergent.	Then:					
	A) B)	It must be Ca Not necessari	-	hv							
	C)	Cauchy only	-	-	is not ze	ero					
	D)	Cauchy only	when th	ne limit i	is zero						
3.		$\det f(x) = [x],$ as $x \to 2$ is:	$x \in R$, v	where [x	c] denot	es the ir	ntegral part of	x. Then	n the limit of		
	A)	1	B)	1.5		C)	2	D)	none of these		
1.	certai	use Latin Squan variety of wher of plots request, k	eat, the	n the nui pectivel	mber of y are:	replica		reatmen	t and the		
5.	For ar	ny two events	4 and B	in a san	nple spa	ace if P	$(A \cap B) \ge P(A$	+P(B))+k, then k is:		
	A)	1	B)	-1		C)	2	D)	0		
5.	Consi	der the following	ng linea	r forms	of treat	ment ef	fects t_1, t_2 and t_3	.:			
		Consider the following linear forms of treatment effects t_1, t_2 and t_3 : 1. $t_1 - 2t_2 + 2t_3$									
	•	$2. \ t_1 - 2t_2 + t_3$									
	3. $3t_1$	$3. 3t_1 + 4t_2 - 7t_3$									
	Which	n of these form	(s) is/ar	e linear	contras	ts?					
	A)	Only 1	B)	2 and 3	3 only	C)	1 and 2 only	D)	Only 3		
7.		be a random variable $X < 16$) given					ance 9. Then th	e lower	bound to		
	A)	0.25	B)	0.90		C)	0.75	D)	0.50		
3.	The c	haracteristic fu		of a rand	om vari			that X i	s:		
	A)	Positive value			B)	Contin		٠.			
	C)	Positively ske	ewed		D)	Symm	etric in distribi	ution			

9.	numbers?								
	A)		if and or	nly if it	is the u	nion of	countably mar	ny disjoi	nt open
	B)	intervals The intersection of any number of closed set is closed							
	C)								
	D)	A set is closed	d if and	only if	it conta	ins all i	ts limit points		
10.		n SRSWOR if n units are selected from a population of size N, the number of sampossible is:							er of samples
	A)	N - n	B)	NC_n		C)	Nn	D)	N/n
11.	A clos A)	ed and bounded Complete	d subset B)	in real Cauch		also call C)	led: Compact	D)	All the above
12.	In a di	aanata matuia an	nana M	OX I OMT I	au b aat (C ia alve	·ova.		
12.	A)	screte metric sp Compact	васе <i>м</i> , В)	finite	subset ,	C)	Open	D)	Closed
13.	Lagnar	yre's price inde	v	a n ia aa	mantad	with w	aiahta aa		
13.	A)	Current year p		el is co.	пірисец В)		eights as. it year quantity	7	
	C)	Base year pric			D)		ear quantity		
14.	Given	the following s	set of ve	ctors in	\mathbb{R}^3				
	(a)	[100, 010, 001	1]		(b)	_	010, 101]		
	(c)	[100, 010, 111	[]		(d)	[110, 0	001, 101]		
	A)	Each of (a) an	d (c) are	e basis	set of ve	ectors o	$f \mathbb{R}^3$		
	B)	(a) alone is a b					a.m.²		
	C) D)	Each of (b) an All sets are ba	` '				of IK ³		
1.5							0		
15.	Family A)	budget metho Chain base inc			r compu B)		of of living index 1	numher	
	C)	Both A and B		1001	D)		of these	number	
16.	Match	List I with List	t II						
		List I				List II			
	a.	Diagonal mata			1.	_	values are diag	gonal ele	ements
	b.	Idempotent m			2.		e exists	1.	
	c. d.	Nonsingular n Orthogonal m			3. 4.		ute value of its is the sum of it		
	u.	Orthogonal in	ант		٦.	Kaiik	is the sum of it	s diagon	iai cicinciiis
	A)	a-2, b-1, c-3, c			B)		-4, c-2, d-3		
	C)	a-4, b-1, c-3, d	1-2		D)	a-1, b-	-2, c-4, d-3		
17.		nbiased coins a		d. If on	e of the	m show	vs head, the pro	bability	that the
	other a	also shows head 1/4	1 1s: B)	1/2		C)	1/8	D)	none of these

18. A man has five coins, one of which has two heads. He ratosses it 3 times. What is the probability that it will fall h						•				
	A)	0.30	B)	0.13	-	C)	0.25	D)	none of these	
19.	unbias	ler to test wheth sedness is reject bility of type I of 0.05	cted if a	nd only	if mor	e than fo	our heads are	obtained	• *	
	A)	0.03	D)	0.01		C)	0.03	D)	none of these	
20.	In the test for independence of attributes with a 3×4 contingency table, the test statistic follows:									
	A)	Chi-square w			B)		quare with 6			
	C)	Students t wit	th / df.		D)	Stude	nts t with 12	df		
21.		umber of telephole for a stocha continuous para discrete parar discrete parar	stic prod arameter arameter meter sp	cess have r space a r space and	ving: and conting conting	ntinuous crete sta	state space ate space ate space	enquiry ec	ounter is an	
22.	desire	atified sampling d degree of pre num precision to Optimum allo Proportional	cision for a give	or a mir ven cost	nimum	cost or nder: Neym		estimate		
23.	$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$] 1S:						-		
	A)	$\pi = (1,0)$	B)	$\pi = (1$,1)	C)	$\pi = (0,0)$	D)	None of these	
24.	The ir A) C)	nterval between Gamma distri Normal distri	ibution	ccessive	e occur B) D)	Poisso	vithin a Poiss on distributio ive exponen	n		
25.		ose P_1 and P_2 are or rect statement $P_1 - P_2$ is a	t?				, ,	n which o	f the following	
	B)	$P_1 + P_2$ is a p	orobabil	ity mea	sure or	(Ω,\mathcal{F})				
	C)	$\propto P_1 + (1-\epsilon)$	\propto) P_2 , 1	for 0 ≤	∝ ≤ 1	, is a pro	obability mea	asure on ($(\Omega$, ${\cal F})$	
	D)	$P_1 \pm P_2$ prob	ability n	neasure	on (Ω	$,\mathcal{F})$				

26. Consider the following statements:										
	1. Characteristic functions of a random variable always provides all the moments of									
	2.	that random variable.Probability generating function exists for any random variable								
	3.			function exists						
	Which	of the follow	ving is c	orrect?						
	A)			ct where as 2 an						
	B)			re correct where	as 2 is	s wrong				
C) All statements are correctD) All statements are wrong										
27.		Let T be a statistic for estimating the parameter θ . Then expected value of the								
	quanti A)	ty $T - \theta$ is call Bias	lled: B)	Risk function	C	Efficacy	D)	MSE		
	A)	Dias	D)	Kisk function	C)	Efficacy	D)	MSE		
28.	The se	et of all limit	points o	of the interval (a	<i>,b</i>) in	R is:				
	A)	$\{a,b\}$	B)	null set	C)	(a,b) itself	D)	[a,b]		
29.	Consider the two statements:									
	 A set is closed if and only if it contains all its cluster points. A set is closed if and only if it contains all its adherent points. 									
	Then:									
	A)	Only (1) is t	true	B)	B) Only (2) is true					
	C)	Both are fal	se	D)	Both	n are true				
30.	Let F	be an open c	overing	of a closed and	oounde	ed set S in R .	Then:			
	A) No finite sub collection of F can cover S									
	B) There must exist a finite sub collection of F that can cover S									
		C) S must be null set								
	D) F must contain finite number of sets									
31.				second moments and variance ar			are 0 ar	nd 256		
	A)	0, 256		B)	27, 2	256				
	C)	0, 229		D)		ot determine				

32. If $\{X_n\}$ is a sequence of independent and identically distributed random variables with

 $Var(X_n) = \sigma^2 < \infty$ and $S_n = \sum_{i=1}^n x_i$. Consider the following lists and select the correct match

List I

List II

- a. Kolmogorov's SLLN
- $1. \qquad \frac{S_n}{n} \stackrel{P}{\to} E(x)$
- b. Khintchin's WLLN
- 2. $P(|\bar{X}_n E(\bar{X}_n)| > \epsilon) < \frac{V(\bar{X}_n)}{\epsilon^2}$
- c. Chebychev's inequality
- 3. $\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} Z \sim N \ (0,1)$
- d. Lindberg –Levy CLT
- $4. \qquad \frac{S_n}{n} \stackrel{a.s}{\to} E(x)$
- A) a-4, b-1, c-2, d-3
- B) a-3, b-2, c-1, d-4
- C) a-1, b-2, c-3, d-4
- D) a-1, b-3, c-2, d-4
- 33. ----- are short term variations with period less than one year.
 - A) Trends

- B) Irregular variations
- C) Seasonal variations
- D) None of these
- 34. ----- is the overall tendency of the time series data to increase or decrease over a long period of time.
 - A) Moving average
- B) Random variation
- C) Cyclical movements
- D) Trend
- 35. If A is an orthogonal matrix then:
 - A) |A| = 0

- B) |A| is always positive
- C) |A| is always negative
- D) None of these
- 36. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ is:
 - A) 1
- B) 2
- C) 3
- D) none of these
- 37. The solution to the system of linear equations: x + y + z = 3; x + 2y + 3z = 4 and x + 4y + 9z = 6 is:
 - A) x = 2; y = 1; z = 0
 - B) x = 1; y = -1; z = 2
 - C) Solution doesn't exists since the system is inconsistent
 - D) Infinitely many solutions

38.	Given A) B) C) D)	A is a square matrix. Then: A is always of full rank. A satisfies its characteristic equation only when it is orthogonal A always satisfies its characteristic equation None of the above is true							
39.	Let <i>W</i> (1) (2) Then:	dependent) If $k < n$, then the vectors in W are always linearly dependent.							
	A) C)	Only (1) is true Both (1) and (rue	B) D)	• `	2) is true 1) and (2) are f	alse	
40.		mine the value obility density fu		h that t			(x, y) = kxy, 0 < 8		
41.		obability that th	e numb	er is les	ss than 6	60 and e		-	tement. What is $\frac{1}{5}$
42.	Which 1. 2. 3.	ch of the following statements on non-parametric test are true? The Kolmogorov – Smisnov test assumes continuity of the data The chi-square test can be applied when the data are discrete or continuous Wilcoxon signed rank test can be applied only for the problem of location							
	A)	1 only	B)	1 and	2 only	C)	1 and 3 only	D)	All are correct
43.		distribution func = $\begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x \ge c \end{cases} \forall$						_	
	A) B) C) D)	F is mixture to Pdf of X is to X has point by X is degener	not defin pinomia		oution				
44.									

Both F(x) and f(x) are continuous

D)

45. Which of the following defines the geometric mean G of a random varia $P(X > 0) = 1$?								n varial	ole X with
	A)	$G = E(\ln X)$			B)	$G = \epsilon$	$\exp\{E(X)\}$		
	C)	$G = \exp\{-\ln$	E(X)		D)	$G = \epsilon$	$\exp\{E(\ln X)\}$		
46.	The mean deviation of a random variable X about a point c will be the least if the:								
	A)	Median of X	B)	Mode	of X	C)	Mean of X	D)	zero
47.		ose $X_{(1)}$, $X_{(2)}$, θ), $\theta > 0$. The						m varia	bles distributed
	A)	$X_{(n)}$	B)	$X_{(1)}$		C)	\bar{X}	D)	$X_{(n)} - X_{(1)}$
48.	 In the case of constant estimators, which of the following is always true? A) Mean square consistency implies weak consistency B) A consistent estimator, if it exists, is always unique C) All consistent estimators are unbiased also D) Weak consistency implies mean square consistency 								
49.									
50.	and 8.						-	·	
	A)	symmetric	В)	leptok	urtic	C)	platykurtic	D)	pyrokurtic
51.	Which A)	n of the following blocking	_		of local unding		ol? replication	D)	none of these
52.		is preferred ove Sample size is Data is homo	s small		B) D)		ole size is large of these		
53.	Which A) C)	of the followi Wishart distri Hotteling's T	bution	generali	zation o B) D)	Maha	quare distributi llanobis D^2 of these	on?	
54.	Let <i>X</i> (1) (2) Then:	The condition	nations	of comp	ponents	of X a	nsider the two so re normally dis ents are multive	tributed	l.
	A) C)	Both statement Only (2) is true		rue	B) D)	-	(1) is true statements are	false	

55.	If A, B and C are three events in the same sigma field such that $A \subset B$, then:							
	A) $P(A \mid C) \le P(B \mid C)$ B) $P(A) < P(B)$ always							
	C) $P(A) \ge P(B)$ D) $P(A \cap B) \ge P(B)$							
56.	A binomial distribution has mean 4 and variance 3. Then it has: A) Only one mode as 4 B) Two modes as 3 and 4 C) Only one mode as 4.25 D) Mode doesn't exist							
57.	If X and Y are independent uniform variates over (0,1), then X+Y follows: A) uniform over (0,2) B) triangular over (0,2) C) beta distribution of first kind D) none of these							
58.	Which of the following cannot be a moment generating function (in the real variable t)?							
	A) $\frac{1}{1-t^2}$ B) $\frac{t}{1-t}$ C) $e^{4(e^t-1)}$ D) $\frac{1}{8}(1+e^t)^3$							
59.	The mean age of a combined group of men and women is 25. If the mean age of men is 26 and that of the group of women is 21, then the percentage of women in the group is: A) 80 B) 20 C) 55 D) none of these							
60.	A distribution with first, second and third quartiles as 25.8, 49 and 64.2 respectively is: A) Cannot determine B) Positively skewed C) Negatively skewed D) Symmetric							
61.	In the case of normal distribution $N(\mu, \sigma^2)$, where μ is known, the quantity $\sum (x_i - \mu)^2$ is: A) Sufficient but not complete for σ^2 B) Complete but not sufficient for σ^2 C) Complete and sufficient for σ^2							
62.	 D) Neither complete nor sufficient for σ² Let Y= ZB+ U, where Y is an nx₁ vector, Z is an nxp matrix of known real numbers (n ≥ p), B is a px1 vector of parameters and U is an nx1 random vector. Also U follows N(0, σ²I), Then Least square estimate of B is B̂ = (Z'Z)⁻¹Z'Y only if Z'Z has rank p 							
	2. The matrix $(I - Z(Z'Z)^{-1}Z')$ is symmetric and indempotent 3. \hat{B} follows $N_p(B, \sigma^2(Z'Z)^{-1})$ Choose the correct answer from the following:							
	 A) Only the statement 1 and 2 are correct B) Only the statement 1 and 3 are correct C) Only the statement 2 and 3 are correct D) All the three statements are correct 							

63.	If X	$\sim U(-\theta,\theta)$, th						
	A)	$X_{(n)}$	B) 2	$X_{(1)}$	C)	$(X_{(1)}, X_{(n)})$) D)	none of these
64.	Constant 1. 2. Then	of observation	exists, it is ons are iid, a	unique	-	meter θ : sts, it must be	a symme	etric function
	A) C)	Both (1) and Only (2) is to		e B) D)	•	(1) is true are false		
65.		nple of size n i $\theta = \theta x^{\theta-1}, 0 < 0$			_	_	is:	
	A)	$\frac{\overline{X}}{1 - \overline{X}}$	B) 2	\overline{X}	C)	$\frac{\overline{X}}{n^2}$	D)	$1-\overline{X}$
66.	The v	value of $1 + \frac{1}{2} + \frac{1}{2}$	$-\frac{1}{2^2} + \frac{1}{2^3} +$	$\frac{1}{2^4} + \dots i$	s:			
	A)	2	B) 1	.5	C)	2.4	D)	$\sqrt{2}$
67.	Let A	$X \sim N(\mu, \sigma^2),$	where σ^2	>0 and μ	is know	n. Then MLE o	of σ^2 is:	
	A)	$\frac{1}{n}\sum_{i}(x_{i}-\overline{x})$	$(x)^2$	B)	$\frac{1}{n-1}$	$\sum_{i} (x_i - \mu)^2$		
	C)	$\frac{1}{n-1}\sum_{i}(x_{i})$	$-\overline{x})^2$	D)	$\frac{1}{n}\sum$	$(x_i - \mu)^2$		
68.		imple linear re	-		_	_		
	A)	$\frac{1}{n-1}\sum e_i^2$		B)	$\frac{1}{n-}$	$\frac{1}{2}\sum e_i^{\ 2}$		
	C)	$\frac{1}{n}\sum e_i^2$		D)	None of	these		
69.	Conv A) C)	enience sampl Probabilistic Nonprobabil	sampling	B)	Strat	ified sampling ter sampling		
70.	The s A) C)	quare of a Stud F with (1, n) t with n ² df		tistic with B) D)	chi-s	ows: quare with <i>n</i> d h <i>n</i> df itself.	f	
71.	If the A) C)	power of the t Biased Most powers		ss than it B) D)	Unbi			

72.	Consi	uci a sampic oi	SIZE II II	rom <i>i</i> v (μ, Σ). 1	_et X 1	be the sample	mean ve	ctor and
		$\frac{1}{-1}\sum_{i=0}^{n}(X_{i}-\bar{X})$					-		
	Then	$n(\overline{X} - \mu_0)^1 S^{-1}$ ributed as;							
	A)	$\frac{(n-1)}{(n-p)}F_{p, n-p}$			B)	$\frac{np}{(n-p)}I$	\vec{p} , $n-p$		
	C)	$\frac{(n-1)p}{(n-p)}F_{n-p},$	p		D)	$\frac{(n-1)p}{(n-p)}$	$F_{p-1, n-p}$		
73.		n among the fol property throug Binomial	h a statis				not possess th		one likelihood Normal
74.	distrib	mpirical distrib	is:		•	•		•	pulation
	A) C)	unbiased and biased but con		nt	B) D)		sed but not consi		
75.	For a : A) C)	symmetric distr Always negat Always zero		the thir	rd centra B) D)	Alway	ent is: s positive as the mean o	f the dist	ribution
76.	If $u = \text{coeffice}$ y is:	ax + b and $v =$ cient of correla	-	veen u	c and v	<i>a</i> are pois 0.4, to	ositive real nu	mbers ar	and if the ween x and
77.	obtain	coefficient of rated by a group of is given to be 3	ank corre	elation lats is 0.8	between 3 and if	n marks	n of the square	ics and 1 es of diff	Physics
78.		correlation coecient of X on 0.5							
79.	$\{(0, 0, 0, 0)\}$	a experiment at (0, 0), (1, 2, 2), (1, 2, 2), (2, 2, 2)	(2, 1, 1)	} was o	btained	l. Then	state which ar		ipal block: following pairs
	A)	AB,BC^2	B)	AB^2 , B	3 <i>C</i>	C)	AC,BC^2	D)	AB,AB^2C^2
80.	_	eople are seated				the prol	bability that tw	vo partic	ular
	A)	$\frac{2}{n}$	B)	$\frac{2}{n-1}$		C)	$\frac{1}{n-1}$	D)	none of these