

CUET PG Model Test Paper [Chemistry]

Q1. Which of these is least likely to act as a Lewis base?

(a) NH₃
(b) BH₃
(c) R - O - H
(d) R₂O

Q2. The equilibrium constant for the aromatization reaction of acetylene is 8. The aromatization reaction is given below

 $3C_2H_2 \xrightarrow{\text{Red hot}} C_6H_6$

If the equilibrium concentration of acetylene is found to be 0.5 then the equilibrium concentration of benzene (C_6H_6) is

(a) $0.5 \mod L^{-1}$

(b) 1 mol L^{-1}

(c) $0.25 \mod L^{-1}$

(d) 2 mol L^{-1}

Q3. Enzymes increases the rate of reaction

- (a) by increasing activation energy
- (b) by decreasing activation energy
- (c) by taking part in the reaction
- (d) by altering concentration of the reaction

Q4. How many chiral centres are present in 2-methyl butane?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Q5. The acid derivative having maximum reactivity towards nucleophilic addition is

- (a) CH₃CONH₂
- (b) (CH₃CO)₂O
- (c) CH₃COCl
- (d) CH₃COOR

Q6. Which of the following molecules possesses linear geometry?

- (a) XeF₂
- (b) XeF₄
- (c) XeOF₄
- (d) XeF₆

Q7. The hybridisation of central atoms in case of diamond and carborundum respectively are

- (a) sp², sp³
 (b) sp³, sp²
- (c) sp^2 , sp
- (d) sp^3 , sp^3

Q8. Consider the following reaction sequence

```
\begin{array}{c} CH_{3}Br \xrightarrow{Mg} X \xrightarrow{Y} (CH_{3})_{3}C_{0}\\ What is Y in the above reaction sequence?\\ (a) CH_{3} CH0\\ (b)\\ O\\ CH_{3} \xrightarrow{-C} -CH_{3}\\ (c)\\ O\\ CH_{3} \xrightarrow{-C} -CH_{2}CH0\\ (d)\\ CH_{3} \xrightarrow{-C} -CH_{2}CH_{3}\end{array}
```

Q9. Compound X having the molecular formula C_8H_{10} forms two isomers Y and Z. Isomer Y when subjected to oxidation gives benzoic acid and isomer Z when subjected to oxidation followed by dehydration gives phthalic anhydride. The structures of the two isomers respectively are

Q10. Which of the following pairs have identical values of e/m?

- (a) A proton and a neutron
- (b) A proton and a deuterium
- (c) Deuterium and an α particle
- (d) An electron and γ rays

Q11. The diamagnetic molecule among the following is

- (a) O₂
- $(b) N_2$
- (c) N⁻2
- $(d) 0^{-2}$

Q12. Which of the following does not react with aqueous solution of KMnO₄, acidified with H₂SO₄?

- (a) SO₂
- (b) Fe²⁺
- (c) NO⁻2
- (d) NO-3

Q13. HClO₄ + P₂O₅ \rightarrow (A) and (B) A and B are

- (a) HClO₃, H₃PO₄
- (b) Cl₂O₆, HPO₃
- (c) ClO₂, H₂PO₄
- (d) Cl₂O₇, HPO₃

Q14. Which of the following does not depend upon the concentration of reactants?

- (a) zero order reaction
- (b) first order reaction
- (c) second order reaction
- (d) third order reaction

Q15. If time for the completion of 75% of a reaction is 4<mark>0 min, then 50% of the reaction was completed in a second sec</mark>

- (a) 16 min
- (b) 25 min
- (c) 18 min
- (d) 20 min

Q16. Which of the following is not correctly matched?

- (a) ClO_3 sp^2 hybridised
- (b) SO₃ sp² hybridised
- (c) NH₃ sp³ hybridised
- (d) PCl_5 sp^3d hybridised

Q17. The actinoids showing +7 oxidation state are

L

- (a) U, Np
- (b) Pu, Am
- (c) Np, Pu

(d) Am, Cm

3

www.teachersadda.com

Q18. Basic strength is maximum for (a) C₆H₅NH₂

(b) $C_6H_4(NO_2) NH_2$

(c) C₆H₅NHCH₃

(d) C₆H₅CH₂NHC₂H₅

Q19. Which of the following statement is incorrect for o-nitrophenol?

- (a) it contains intermolecular H-bonding
- (b) its boiling point is lower than that of p-nitrophenol
- (c) its boiling point is lower than that of m-nitrophenol
- (d) its vapour pressure is higher as compared to p-nitrophenol

Q20. Mark the correct statement.

- (a) For a chemical reaction to be feasible, G should be zero
- (b) Entropy is a measure of order of a system
- (c) For a chemical reaction to be feasible, G increases
- (d) The total energy of an isolated system is constant

Q21. K_{sp} for Mg (OH)₂ is 0.4 10 ⁻¹¹, then the pH value of the solution is

- (a) 5
- (b) 8.5
- (c) 10.3
- (d) 12

Q22. Freezing point is minimum for

- (a) 0.1 M Al₂(SO₄)₃
- (b) 0.1 M BaCl₂
- (c) 0.1 M Urea
- (d) 0.1 M NaCl

Q23. Which of the following does not present in the form of minerals?

- (a) SO²⁻4
- (b) S²⁻
- (c) NO⁻3
- (d) Cl[.]

Q24. The species which acts as a Lewis but not a Bronsted acid is

- (a) NH⁻2
- (b) 0²⁻
- (c) BF₃
- (d) OH-

Q25. Which of the following species does not exist?

- (a) BF3
- (b) B(OH)³6⁻
- (c) Al_2Cl_6
- (d) AlCl₃

Q26. The number of peroxide bonds in perxenate ion $[XeO_6]^{4-}$ is

- (a) 0
- (b) 2
- (c) 3
- (d) 1

Q27. Anodising can be done by electrolysing dilute sulphuric acid with Al as anode. This result in

- (a) the formation of protective oxide layer
- (b) the formation of $Al_2(SO_4)_3$ and SO_2 gas
- (c) the formation of AlH_3 and SO_2 gas
- (d) the formation of Al (HSO₃) and H_2 gas

Q28. Cannizaro reaction is given by

- (a) CH₃CHO
- (b) C₆H₅CHO
- (c) CH₃COOH₃
- (d) C₆H₅COCH₃

Q29. What is the product of the reaction of $C_6H_5OC_2H_5$ with HI?

- (a) $C_6H_5OH + C_2H_5I$
- (b) $C_2H_5OH + C_6H_5I$
- (c) C₂H₅.I only
- (d) $C_6H_5OH + C_6H_5I$

Q30. The correct decreasing order of priority for the functional groups of organic compounds in the

- IUPAC system of nomenclature is (a) COOH, SO₃H, CONH₂, CHO
- (b) SO₃H, COOH, CONH₂, CHO
- (c) CHO, COOH, SO₃H, CONH₂
- (d) CONH₂, CHO, SO₃H, COOH

Q31. When an acid cell is charged, then

- (a) voltage of cell increases
- (b) resistance of cell increases
- (c) electrolyte of cell dilutes
- (d) all of the above

5

Q32. Which of the following exhibit only optical isomerism? (a)

OH

(b) CH₃CH₂CHCH₂CH₃ (c)

(d) 4-chloroheptane

Q33. In which compound metal cannot be replaced by Zn metal?

- (a) $[Mg (NH_3)_6]^{2+}$
- (b) [Ag (CN)₂]⁻
- (c) [Au (CN)₂]⁻
- (d) none of the above

Q34. $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$; E° = 1.51 V $MnO_2 + 4H^+ + 2e^- \rightarrow M_{n^{2+}} + 2H_2O$; E° = 1.23 V E° MnO_4^-/MnO_2 is (a) 1.70 V (b) 0.91 V (c) 1.37 V (d) 0.548 V

Q35. Which of the following equation is not correct?

(a)
$$\left(p + \frac{an^2}{V^2}\right)(V-b) = nRT$$

(b) $\left(p + \frac{a}{V^2}\right)(V-b) = RT$
(c) $\left(p + \frac{an^2}{V^2}\right)(V-nb) = nRT$
(d) $p = \frac{RT}{(V-b)} - \frac{a}{V^2}$

- Q36. Which of the following relation is incorrect?
- (a) $\Delta G^{\circ} = -RT \ln k$ (b) $k = e^{\frac{-\Delta G^{\circ}}{RT}}$ (c) $e^{\frac{-\Delta G^{\circ}}{2.303 RT}}$
- (d) In K = $\frac{\Delta G^{\circ}}{RT}$

Q37. For which of the following reactions, $K_p = K_c$? (a) $PCI_5 \rightleftharpoons PCI_3 + CI_2$ (b) $2NH_3 \rightleftharpoons N_2 + 3H_2$ (c) $2HI \rightleftharpoons H_2 + I_2$ (d) $SO_2 + O_2 \rightleftharpoons SO_3$

Q38. Nucleophilicity is highest for

- (a) NH⁻2
- (b) CH-3
- (c) Cl-
- (d) ⁻OH

Q39. The value of van Hoff's factor for Hg2(NO3)2 is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Q40. An antibiotic effective in treatment of pneumonia, bronchitis etc. is

- (a) penicillin
- (b) patalin
- (c) chloromycetin
- (d) tetracyline

Q41. Which one of the following is least basic?

- (a) NF₃
- (b) NCl₃
- (c) NBr₃
- (d) NI3

Q42. 10 g of hydrogen and 64 g of oxygen were kept in a steel vessel and exploded. Amount of water produced in this reaction will be

- (a) 2 mol
- (b) 4 mol
- (c) 8 mol
- (d) 10 mol

Q43. CO is isoelectronic with

- (a) CN-
- (b) N_2^+
- (c) N_2^{2-}
- (d) NO-

Q44. Oxidation number of Cr in $Cr_2O_7^{2-}$ is

- (a) +2
- (b) +4
- (c) +6
- (d) +7

Q45. Radioactive isotope of hydrogen is

- (a) uranium
- (b) deuterium
- (c) tritium
- (d) none of these

Q46. Which one of the following has incomplete octet?

- (a) NH_3
- (b) BCl_3
- (c) CCl₄
- (d) PCl₃

Q47. Which one of the following is wrong?

- (a) FeSO₄. (NH₄)₂SO₄.6H₂O Mohr salt
- (b) Na₂CO₃. 10H₂O washing soda
- (c) FeSO₄.7H₂O green vitriol
- (d) CaSO₄.2H₂O plaster of Paris

Q48. Which one of the following is most basic?

- (a) $Mg(OH)_2$
- (b) $Ca(OH)_2$
- (c) $Sr(OH)_2$
- (d) $Ba(OH)_2$

Q49. Gypsum is added to cement to

- (a) decrease the rate of setting of cement
- (b) increase the rate of setting of cement
- (c) bind the particles of calcium silicate
- (d) facilitate the formation of colloidal gel

Q50. The order of osmotic pressure of three equimolar aqueous solutions of CaCl₂, NaCl and C₆H₁₂O₆

- (glucose) is
- (a) $CaCl_2 > NaCl > C_6H_{12}O_6$
- (b) NaCl > CaCl₂ > C₆H₁₂O₆
- (c) $C_6H_{12}O_6 > CaCl_2 > NaCl$
- (d) $C_6H_{12}O_6 > NaCl > CaCl_2$

Q51. Among water molecules, the type of bond present between H and O is

- (a) hydrogen bond
- (b) electrovalent bond
- (c) coordinate bond
- (d) covalent bond

Q52. In aluminothermic process, aluminium acts as

- (a) a reducing agent
- (b) an oxidising agent
- (c) a complex forming agent
- (d) a dehydrating agent

8

 $\mathbf{Q53.}$ H₃BO₃ is acidic because it

- (a) liberates H⁺ ions
- (b) accepts OH- ions
- (c) Both (a) and (b)
- (d) none of these

Q54. Which one of the following statements is wrong?

- (a) in homogeneous catalysis, reactants, products and catalyst are in same phase
- (b) a catalyst accelerates the rate of reaction by bringing down the energy of activation
- (c) a catalyst alters the equilibrium constant
- (d) the mass of catalyst remains same after reaction

Q55. Two gases A and B having the same volume diffuse through a porous partition in 20 s and 10 s respectively. The molecular mass of A is 49 u. Molecular mass of B will be

(a) 25.00 u

(b) 50.00 u

(c) 12.25 u

(d) 6.50 u

Q56. The heats of neutralisation of four acids A, B, C and D are 13.7, 9.4, 11.2, and 12.4 kcal respectively. The weakest and strongest among these acids are

- (a) B and A respectively
- (b) A and C respectively
- (c) C and D respectively
- (d) A and B respectively

Q57. Phosphorus pentachloride dissociates as follows in a closed reaction vessel,

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

If total pressure at equilibrium of the reaction mixture is p and degree of dissociation of PCl₅ is x, the partial pressure of PCl₃ will be

- (a) $\left(\frac{x}{x+1}\right)p$ (b) $\left(\frac{2x}{1-x}\right)p$ (c) $\left(\frac{x}{x-1}\right)p$
- (d) $\left(\frac{x}{1-x}\right)p$

Q58. The equilibrium constant for the reaction, $aA + bB \rightleftharpoons cC + dD$ is K, then the equilibrium constant for the reaction, $naA + nbB \rightleftharpoons ncC + ndD$ will be

- (a) K
- (b) Kⁿ
- $(c)\frac{1}{K^n}$
- $(d) \frac{1}{K^{n-1}}$

9

Q59. Which one of the following does not reduce Benedict's solution?

- (a) Glucose
- (b) Sucrose
- (c) Aldehyde
- (d) Fructose

Q60. Nitration of aniline also gives m-nitroaniline in strong acidic medium because

- (a) in electrophilic substitution, reaction amino group is meta-directive
- (b) in spite of substituents, nitro group always goes to m-position
- (c) in strong acidic medium, aniline present as anilinium ion
- (d) None of the above

Q61. Which one of the following is not a nitro derivative?

- (a) $C_6H_5NO_2$
- (b) CH₃CH₂ONO
- (c)

 $CH_3 - CH - N$

(d) C₆H₄(OH)NO₂

Q62. An organic compound of molecular formula C₄H₁₀O does not react with sodium. With excess of HI, it gives only one type of alkyl halide. The compound is

- (a) ethoxy ethane
- (b) 1-butanol
- (c) 1-methoxy propane
- (d) 2-methoxy propane

Q63. Formic acid and acetic acid are distinguished by

- (a) NaHCO3
- (b) FeCl₃
- (c) Victor Meyer test
- (d) Tollen's reagent

Q64. Select the detergent that is used to prepare cosmetics

- (a) DDBS
- (b) polyethylene glycol
- (c) cetyltrimethyl ammonium chloride
- (d) LAS

Q65. Of the following which one is classified as polyester polymer?

- (a) Nylon 66
- (b) Terylene
- (c) Bakelite
- (d) Melamine

Q66. Ether on reacting with P_2S_5 form

- (a) diethyl sulphide
- (b) thioalcohol
- (c) thioether
- (d) thioaldehyde

Q67. Sodium phenoxide reacts with CO₂ at 400 K and 4.7 atm pressure to give

- (a) catechol
- (b) salicylaldehyde
- (c) sodium salicylate
- (d) benzoic acid

Q68. The raw material for Raschig process is

- (a) chlorobenzene
- (b) phenol
- (c) benzene
- (d) anisol

Q69. Consider the following carbocations I. Cl₃ c⁺ II. Cl₂CH⁺ III. ClCH⁺₂ IV. CH₃ The stability sequence follows the order (a) IV < I < III < II (b) I < II < III < IV (c) II < III < IV < I (d) III < I < IV < I Q70. The IUPAC name of OH is

- (a) but-3-enoic acid
- (b) but-1-enoic acid
- (c) pent-4-enoic acid
- (d) prop-2-enoic acid

Q71. 0.833 mole of a carbohydrate with empirical formula CH₂O, has 10g of hydrogen. Molecular formula of carbohydrate is

- (a) C₃H₅O₃
- (b) C₆H₁₂O₆
- $(c)C_{3}H_{10}O_{5}$
- (d) $C_3H_4O_3$

Q72. Toluene by Etard's reaction gives

- (a) ortho-cresol
- (b) boric acid

11

- (c) benzyl alcohol
- (d) benzaldehyde

Q73. Pick out the unsaturated fatty acid from the following

- (a) Stearic acid
- (b) Lauric acid
- (c) Oleic acid
- (d) Palmitic acid

Q74. What is the product formed when acetylene reacts with hypochlorous acid?

- (a) CH₃COCl
- (b) ClCH₂CHO
- (c) Cl₂CHCHO
- (d) ClCH₂COOH

Q75. Benzamide on reaction with POCl₃ gives

- (a) aniline
- (b) chlorobenzene
- (c) phenylamine
- (d) phenyl nitrile

Solution

S1. Ans.(b)

Sol. BH₃, being electron deficient, have a tendency of gaining, not losing electrons, so it behaves like a Lewis acid, not like a Lewis base.

S2. Ans.(b)

Sol. For the given reaction, $\text{Kc} = \frac{[C6H6]}{\{C2H2\}3}$ $8 = \frac{[C6H6]}{[C6H6]}$ $[C_6H_6] = 8 \times (0.5)^3 = 1$

S3. Ans.(b)

Sol. Enzymes act as catalysts, thus they increase the rate of a biochemical reaction by providing an alternate pathway of lower activation energy.

S4. Ans.(a)

Sol. The structure of 2-methylbutane is

Thus, it contains no chiral centre i.e., the carbon, all the four valencies of which are satisfied by four different groups.

S5. Ans.(c)

Sol. Cl being an electron withdrawing group decreases the electron density at carbonyl carbon and makes the C = 0 bond more polar and hence more reactive towards nucleophilic addition reactions.

S6. Ans.(a) **Sol.** $XeF_2 \Rightarrow 2bp + 4/p$ Thus, geometry linear $XeF_4 \Rightarrow 4bp + 2/p$ square planar $XeOF_4 \Rightarrow 5bp + 1/p$ square pyramid $XeF_6 \Rightarrow 6bp + 1/p$ distorted octahedral

S7. Ans.(d)

Sol. In diamond and carborundum (SiC) both the central atoms are sp³ hybridised.

S8. Ans.(b) Sol. $CH_{3}Br \xrightarrow{Mg} CH_{3}Mg Br \xrightarrow{H_{3}C-CH_{3}} CH_{3}Mg Br \xrightarrow{H_{3}C-CH_{3}} O Ma Br$ CH₃— Ć—CH₃ | CH₃ -MgBr(OH) H₂O $CH_3 - \dot{C} - CH_3$ or CH₂ (CH₃)₃C--OH S9. Ans.(c) **Sol.** The possible isomers of the molecule with molecular formula C₈H₁₀ are

Since, Y on oxidation gives only benzoic acid, it means that it contains only one side chain. Thus, Y is

Since, Z contains side chain at two places, so its oxidation product contains two -COOH groups. Further, formation of phthalic anhydride suggests that both the -COOH groups are present at adjacent positions. Thus, Z is

S10. Ans.(c)

Sol. $\frac{\frac{e}{m_d}}{\frac{2e}{m_\alpha}} = \frac{4m_d}{4m_d} = 1$. Thus, deuterium and an α -particle have identical value of e/m.

S11. Ans.(b)

Sol. Molecules having no unpaired electrons are diamagnetic in nature. $N_2(14) = \sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\pi 2p_x^2 \approx \pi 2p^2 y$, $\sigma 2p_z^2$ No unpaired electron is present, so it is a diamagnetic species.

S12. Ans.(d)

Sol. In acidic medium, KMnO₄ acts as a good oxidising agent but it cannot oxidise No₃⁻ ion, as in it N is present in its highest oxidation state (+5), so further increase in oxidation number is not possible.

S13. Ans.(d)

Sol. $2HClO_4 + P_2O_5 \rightarrow Cl_2O_7 + 2HPO_3$

S14. Ans.(a)

Sol. In case of zero order reaction, rate of reaction does not depend upon the concentration of reactants.

S15. Ans.(d)

Sol. t_{75%} = 2 × t_{50%}

$$t_{50\%} = \frac{t75\%}{2} = \frac{40}{2} = 20 \text{ min}$$

S16. Ans.(a)

Sol. $CIO_3^- \Rightarrow 3bp + 1/p \Rightarrow sp^3$ hybridized = pyramidal geometry

S17. Ans.(c)

Sol. Np and Pu in NpO⁺₃ and PuO₃⁺ oxocations show +7 oxidation state which are not so stable.

S18. Ans.(d)

Sol. More the number of electron releasing R groups attached directly with N-atom, more is the basic strength. Thus, C₆H₅CH₂NHC₂H₅ has maximum basic strength.

S19. Ans.(a)

Sol. o-nitrophenol contains intramolecular H-bonding. All other given statements are true.

S20. Ans.(d)

Sol. For a chemical reaction to be feasible, ΔG should be < 0, i.e., negative. Further entropy is the measure of randomness of a system.

S21. Ans.(c) **Sol.** Mg(OH)₂ dissolved in the following manner. $Mg(OH)_2 \rightarrow Mg^{2+} + 2OH^{-1}$ s mol/L s mol/L 2s mol/L (s = solubility) $K_{sp} = [Mg^{2+}] [OH^{-}]^2$ $= (s) (2s)^2 = 4s^3$ $4s^3 = 0.4 \times 10^{-11}$ $s^3 = 10^{-12}$ $s = 10^{-4}$ Since 1 mol Mg (OH)₂ provides 2 moles of [OH-], so [OH-] = 2 × 10-4 $pOH = -log[OH^{-}] = -log(2 \times 10^{-4}) = 3.7$ pH = 14 - pOH = 14 - 3.7 = 10.3

S22. Ans.(a)

Sol. Depression in freezing point is a colligative property i.e., depends upon the number of particles. Thus, as the number of particles increases, freezing point decreases.

Thus 0.1 M Al₂(SO₄)₃ shows minimum freezing point.

S23. Ans.(c)

Sol. Since nitrates of almost all salts are soluble in water, so they are never present as minerals.

S24. Ans.(c)

Sol. BF₃ being electron deficient acts as a Lewis acid but it is not a Bronsted acid because of the absence of H atoms.

S25. Ans.(b)

Sol. B, because of the absence of d-orbitals, cannot extend its covalency beyond 4 and hence, B(OH)³6⁻ does not exist.

S26. Ans.(a)

Sol. Structure of [XeO₆]⁴⁻ is

Thus, it does not contain any peroxide bond.

S27. Ans.(a)

Sol. Anodising of Al results in the formation of a protective layer over Al surface.

S28. Ans.(b)

Sol. Cannizaro reaction is given by only those aldehydes which do not contain any α – H atom. Among the given only C₆H₅CHO (benzaldehyde) has no α – H atom. So, it will give Cannizaro reaction.

Thus, the products are C₂H₅I and C₆H₅OH.

S30. Ans.(a)

Sol. The correct decreasing order of priority in IUPAC system of nomenclature is –COOH, –SO₃H, –CONH₂, –CHO

S31. Ans.(a)

Sol. Charging results in increase voltage.

S32. Ans.(c)

Sol.

 \rightarrow =CH-CH-COOH contains chiral carbon

atom but has no such double bond to which different groups are attached. Hence, it will exhibit only optical isomerism.

S33. Ans.(a)

Sol. Zn being less reactive than Mg cannot replace Mg from its salts.

S34. Ans.(a) Sol. For the reaction, $MnO^{4} + 4H^{+} + 3e^{-} \rightarrow MnO_{2} + 2H_{2}O$ $-E_{3} = \frac{-1.51 \times 5 + 2 \times 1.23}{3} = 1.70 \text{ V}$

S35. Ans.(a)

Sol. Van der Waals' equation is $\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$ For 1 mol, n = 1 $\left(p + \frac{a}{V^2}\right)(V - b) = RT$ or $p = \frac{RT}{(V-b)} - \frac{a}{V^2}$

S36. Ans.(c) Sol. $\Delta G^{\circ} = -RT \ln K$ $\ln k = -\frac{\Delta G^{\circ}}{RT}$ $k = e^{-\Delta G^{\circ}}/RT$ **S37. Ans.(c) Sol.** For, 2HI \rightleftharpoons H₂ + I₂ $\Delta n_g = 2 - 2 = 0$ $K_p = K_c (RT)^{\Delta n_g} = K_c$

S38. Ans.(b)

Sol. A less electronegative atom is more nucleophilic. Thus, nucleophilicity is highest for CH-3 among the given.

S39. Ans.(c)

Sol. Hg₂(NO₃)₂ ionises as

Hg₂ $(NO_3)_2 \rightarrow \underbrace{Hg_2^2 + 2NO_3^-}_{3 \text{ ions}}$ So, van't Hoff factor, i = 3

S40. Ans.(c)

Sol. Chloromycetin is the antibiotic that is effective for treating pneumonia, bronchitis etc.

S41. Ans.(a)

Sol. Basic character of trihalides follows following decreasing order

 $NI_3 > NBr_3 > NCl_3 > NF_3$

Hence, NF3 is least basic.

Despite the presence of a lone pair of electrons on nitrogen, NF3 does not act as a Lewis base. There is no known compound in which it donates a pair of electrons to other reagents.

S42. Ans.(b)

Sol. 2H2 + O ₂ 2H ₂ O	
10 g 64 g	
5 mol 2 mol	
4 mol H ₂ + 2mol O ₂ 4 mol H ₂ O	
(1 mol remaining)	
∴Here, O₂ is limiting reagent.	

S43. Ans.(a)

Sol. Number of electrons in CO = 6 + 8 = 14 $CN^- = 6 + 7 + 1 = 14$ $N_2^+ = 7 + 7 - 1 = 13$ $N_2^{2^-} = 7 + 7 + 2 = 16$ $NO^- = 7 + 8 + 1 = 16$ CO is isoelectronic with CN- because both species have same number of electrons.

S44. Ans.(c)

Sol. Let the oxidation number of Cr in $Cr_2O_7^{2-}$ is x. 2x + (7 × -2) = -2 2x = -2 + 14 or x = 12/2 = +6 S45. Ans.(c) **Sol.** Tritium is a radioactive isotope of hydrogen.

S46. Ans.(b) **Sol.** ₅B = 2, 3 $_{17}Cl = 2, 8, 7$ Cl - B - ClCl

In BCl₃, B has 6 electrons. Therefore, it has incomplete octet.

S47. Ans.(d)

Sol. CaSO₄.2H₂O – Gypsum; CaSO₄. $\frac{1}{2}$ H₂O – plaster of Paris.

S48. Ans.(d)

Sol. Ba(OH)₂ is the most basic hydroxide because basic strength of hydroxide increase on moving down the group.

S49. Ans.(a)

Sol. Gypsum is added to decrease the rate of setting of cement and it converts fast setting tricalcium aluminate to calcium sulphoaluminate which sets slowly.

S50. Ans.(a)

Sol. Colligative properties depend only on the number of solute particles in the solution. For different solutes of same molar concentration, the colligative properties (osmotic pressure) have greater value for the solution which gives more number of particles on ionisation.

 $CaCl_2(aq) \rightleftharpoons Ca^{2+}(aq) + 2Cl^{-}(aq) = 3$ ions

 $NaCl(aq) \rightleftharpoons Na^+ + Cl^- = 2$ ions

```
C_6H_{12}O_6(aq) \rightarrow No ions
```

Hence, the order of osmotic pressure of equimolar solutions of CaCl₂, NaCl and glucose will be $CaCl_2 > NaCl > glucose (C_6H_{12}O_6)$

S51. Ans.(a)

Sol. Oxygen atom of each H₂O molecule is covalently linked with two H-atoms of its own molecule and with another H-atom of adjacent H₂O molecules by H-bonding.

S52. Ans.(a)

Sol. Goldschmidt in 1905 discovered a method for the reduction of haematite (Fe_2O_3) with aluminium metal (aluminothermic process). In this, Fe₂O₃ and Al are taken in 3:1 ratio and this mixture, known as thermite, is ignited to initiate the reaction, when Fe₂O₃ is reduced to molten Fe.

 $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe + 323 kJ.$

molten

S53. Ans.(b)

Sol. H₃BO₃ is a weak acid and ionises mainly as monobasic acid. It does not liberate H⁺ ion but it accepts OH- i.e., behaves as Lewis acid. H₃BO₃ + H₂O \rightarrow B(OH)⁻₄ + H⁺

S54. Ans.(c)

Sol. A catalyst does not alter the equilibrium constant. It helps in easy attainment of equilibrium.

S55. Ans.(c) Sol. $\frac{r_A}{r_B} = \sqrt{\frac{M_B}{M_A}}$ or $\frac{V_A}{t_A} \times \frac{t_B}{t_B} = \sqrt{\frac{M_B}{M_A}}$ \therefore V_A = V_B (given in the question) $\frac{10}{20} = \sqrt{\frac{M_B}{49}}$ $\frac{1}{4} = \frac{M_B}{49}$ M_B = 49/4 = 12.25u

S56. Ans.(a)

Sol. Lower the value of heat of neutralisation, weaker is the acid and vice-versa. Hence, B is the weakest and A is the strongest acid in the given options.

S57. Ans.(a) **Sol.** PCl₃(g) \Rightarrow PCl₃(g) + Cl₂(g) (1-x) x x Total number of moles at equilibrium = (1 - x) + x + x = 1 + xP_{PCl₃} = $\left(\frac{x}{1 + x}\right) \times P$ **S58.** Ans.(b) **Sol.** aA + bB \Rightarrow cC + dD Equilibrium constant K = $\frac{[C]^{C}[D]^{d}}{[A]^{a}[B]^{nb}}$ naA + nbB \Rightarrow ncC + ndD Equilibrium constant, K¹ = $\frac{[C]^{nc}[D]^{nd}}{[A]^{na}[B]^{nd}}$ = $\left(\frac{[C]^{C}[D]^{a}}{[A]^{a}[B]^{b}}\right)^{n} = K^{n}$

S59. Ans.(b)

Sol. Sucrose does not reduce Benedict's reagent because it is a non-reducing sugar.

S60. Ans.(b)

Sol. Nitro group goes always to metal position, in aromatic compounds, irrespective to the substituents.

S61. Ans.(b) **Sol.** $CH_3CH_2 - O - N = O$ is a nitrite derivative, hence it is not a nitro derivative.

S62. Ans.(a)

Sol. $C_4H_{10}O \xrightarrow{Hl}$ only one type of halide. Therefore, $C_4H_{10}O$ may be a symmetrical ether i.e., ethoxyethane. $C_2H_5OC_2H_5 + 2HI \rightarrow 2C_2H_5I + H_2O$ ethoxyethane.

S63. Ans.(d)

Sol. Formic acid has — C — H (aldehyde) group. It reduces Tollen's reagent to silver mirror lile other aldehyde on the other hand, acetic acid cannot reduce Tollen's reagent.

S64. Ans.(c)

Sol. Cetyltrimethyl ammonium chloride is used to prepare cosmetics because it has germicidal property.

S65. Ans.(b)

Sol. Terylene is a polyester polymer because it is formed by the monomer units terephthalic acid and ethylene glycol.

S66. Ans.(c)

Sol. Ether on reacting with P2S5 form thioether. $5R-O-R + P_2S_5 \rightarrow 5R - S - R + P_2O_5$

0

S68. Ans.(c)

Sol. Raschig process is the commercial method for the preparation of chlorobenzene from benzene.

S69. Ans.(b)

Sol. Electron withdrawing groups like $-No_2$, -X etc., decrease the stability of carbonium ion. So, the stability order is

$$\operatorname{Cl}_3C^+ < \operatorname{Cl}_2C_H^+ < \operatorname{Cl}_{H_2}^+ < \operatorname{C}_{CH_2}^+$$

S70. Ans.(a)

Sol. $CH_2 = CH - CH_2 - C - OH$

S71. Ans.(b)

Sol. Moles of carbohydrate = 0.833 Weight of hydrogen = 10 g 0.833 moles of carbohydrate has hydrogens = 10g 1 mole of carbohydrate has hydrogen = $\frac{10 \times 1}{0.833}$ = 12 g Given, empirical formula of carbohydrate = CH₂O CH₂O contains hydrogen = 2g hydrogen per mole Molecular formula should contain hydrogen = $\frac{12 \times 2}{2}$ = 12 Molecular formula = C₆H₁₂O₆

S72. Ans.(d)

Sol. This reaction involves the partial oxidation of toluene with chromyl chloride (CrO₂Cl₂) solution in CCl₄ or CS₂. The product formed is benzaldehyde.

S73. Ans.(c) Sol. Oleic acid is 9-octadecanoic acid. CH₃ (CH₂)₇ CH = CH(CH₂)₇ COOH

S74. Ans.(c)

CH HOCI	CHOH HOCI	$CH(OH)_2$	СНО
Sol. $ \xrightarrow{\text{notal}}$	$\parallel \longrightarrow$		\longrightarrow
СН	CHCl	CHCl ₂	CHCl ₂

S75. Ans.(d)

Sol. Benzamide undergoes dehydration on reaction with POCl₃ and phenyl nitrile is formed. $C_6H_5CO NH_2 \xrightarrow{POCl_3} C_6H_5CN$ benzamide dehydration phenylnitrile