Adda 247

PROPERTIES OF INTEGERS

Properties of addition

Closure Property: Let a and b be any two integers, then $a+b$ will always be an integer. This is called the closure property of addition of integers.
Examples: (a) $7+3=10$
(b) $(-3)+6=3$

Commutative Property: If a and b are two integers, then $a+b=b+a$, i.e., on changing the order of integers, we get the same result. This is called the commutative property of addition of integers.
Examples: (a) $2+7=7+2=9$
(b) $(-3)+(12)=(12)+(-3)=9$

Associative Property: If a, b, and c are three integers, then $a+(b+c)=(a+b)+c$, i.e., in the addition of integers, we get the same result, even the grouping is changed. This is called the associative property of addition of integers.
Examples:
$[(-3)+(-4)]+(8)=(-3)+[(-4)+8]$
$(-7)+8=(-3)+4$
$1=1$

Additive identity : If zero is added to any integer, the value of integer does not change. If ' a ' is an integer, then $\mathrm{a}+0=\mathrm{a}=0+\mathrm{a}$. Hence, zero is called the additive identity of integers. Examples :
(a) $12+0=12=0+12$
(b) $(-3)+0=(-3)=0+(-3)$

Additive Inverse : When an integer is added to its opposite, we get the result as zero (additive identity). If a is an integer, then $(-a)$ is its opposite (or vice- versa) such that
$a+(-a)=0=(-a)+a$
Thus, an integer and its opposite are called the additive inverse of each other.
Examples:
$2+(-2)=0=(-2)+2$
Property of 1: Addition of 1 to any integer gives its successor.
Examples: 7+1 = 8
Hence, 8 is the successor of 7 .
$-5+1=(-4)$
Hence, (-4) is the successor of (-5).

Properties of subtraction

Closure Property: If a and b are two integers, then $a-b$ will always be an integer. This is called the closure property of subtraction of integers.
Examples: (a) 3-7=-4
(b) $(-5)-(-6)=1$

Commutative Property: If a and b are two integers, then $a-b \neq b-a$, i.e., commutative property does not hold good for the subtraction of integers.
Examples : $7-(-8)=15$ but $(-8)-7=-15$
$3-4=-1$ but $4-3=1$
Hence, subtraction of integers is not commutative.
Associative Property : If a, b and c are three integers, then $(a-b)-C \neq a-(b-c)$, i.e., associative property does not hold good for the subtraction of integers.
Example : $(8-4)-2 \neq 8-(4-2)$
$4-2 \neq 8$ - 2
$2 \neq 6$
Hence, subtraction of integers is not associative.

Property of Zero : When zero is subtracted from an integer, we get the same integer, i.e., a- $0=a$, where ' a ' is an integer.
Examples: (a) 6-0=6
(b) $(-6)-0=(-6)$

Property of 1: Subtraction of 1 from any integer gives its predecessor.
Examples
(a) $7-1=6$ (6 is predecessor of 7.)
(b) $(-3)-1=(-4)[(-4)$ is predecessor of (-3).]

Properties of multiplication

Closure Property: If a and b are two integers then $\mathrm{a} \times \mathrm{b}$ will also be an integer. This is called the closure property of multiplication of integers.
Examples: (a) $3 \times(-4)=(-12)$
(b) $(-7)(-2)=14$

Commutative Property: If a and b are two integers, then $a \times b=b \times a$, i.e., on changing the order of integers, we get the same result. This is called the commutative property of multiplication of integers.
Examples: (a) $7 \times 2=2 \times 7=14$
(b) $(-3) \times(-7)=(-7) \times(-3)=21$

Thus, commutative property holds good for the multiplication of integers.
Associative Property: If a, b and c are three integers, then $a \times(b \times c)=(a \times b) \times c$. This is called the associative property of multiplication of integers.
Examples: $(3 \times 4) \times 5=3 \times(4 \times 5)$
$12 \times 5=3 \times 20$
$60=60$
Thus, associative property holds good for the multiplication of integers.

Multiplicative Identity: The product of any integer and 1 gives the same integer. If ' a ' is an integer, then a $\times 1=\mathrm{a}=1 \times \mathrm{a}$.
Hence, 1 is called the multiplicative identity.
Examples: (a) $7 \times 1=1 \times 7=7$
(a) $(-3) \times 1=1 \times(-3)=(-3)$

Multiplicative Inverse: The product of any integer and its reciprocal gives the result as 1 (multiplicative identity). If ' a ' is an integer, then $a \times \frac{1}{a}=1=\frac{1}{a} \times a$. Thus, an integer and its reciprocal are called the multiplicative inverse of each other.
Examples: (a) $3 \times \frac{1}{3}=1=\frac{1}{3} \times 3$
(b) $(-5) \times \frac{1}{(-5)}=1=\frac{1}{(-5)} \times-5$

Property of Zero : The product of any integer and zero gives the result as zero. If ' a ' is an integer, then $a \times$ $0=0 \times a=0$.
Examples: $6 \times 0=0 \times 6=0$
Distributive Property: Multiplication distributes over addition. If a, b, and c are three integers, then $a \times$ $(b+c)=a b+a c$. This is called the distributive property of multiplication of integers.
Examples : $(-7) \times[3+(-4)]=(-7)(3)+(-7) \times(-4)$
$(-7) \times(-1)=(-21)+28$
$7=7$

Properties of division

Closure Property: Closure property does not hold good for division of integers.
Examples: $12 \div 3=4$ (4 is an integer.)
Commutative Property: If a and b are two integers, then $a \div b \neq b \div a$.
Examples: (a) $4 \div 2=2$ but $2 \div 4=\frac{2}{4}$ or $\frac{1}{2}$
(b) $(-3) \div 1=-3$ but $1 \div(-3)=\frac{1}{-3}$

Associative Property : If a, b, c are three integers, then $(a \div b)+c \neq a \div(b \div c)$
Example : $(24 \div 4) \div(-2) \neq 24 \div[4 \div(-2)]$
$6 \div(-2) \neq 24 \div(-2)$
$(-3) \neq(-12)$
Property of Zero : When zero is divided by any integer, the result is always zero. If a is and integer, then $0 \div a=0$.

