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1. Suppose x ¢ Q, the set of all rational | 3. Let R? be the Euclidean plane with
p usual metric and let
numbers, with ¥== where p, q ¢ Z and 1 1
: E={(—, 1——} n=l23,.. ;cRZ
q>0. Definef:R >R by: n n
The interior of E in R2 is :
1.ifx=0
' Ay {0, 1)}
[(x)=]0 ifxeR-Q
1 T (B} &, the empty set
q
(C) E
The set of continuities of fin R is : (D) R2
(A) ¢, the empty set
B Q 4. (a) Afunctionf:(a, b) - Ris uniformly
continuous as (a, b) if and only if
(C© R-Q there is a continuous extension
o R ?offon [a, b].

2. Let aand B respectively denote the limit
inferior and limit superior of {S_}, where

S, =" (1+%] forn=1,23, ... then
SpiasS, <p}=

(A §8,:n=1,23, ..}

(B) R

Paper-IT1

(b) The function f[: (0, —1-}—-) R

m

. (1
defined by f(x)=x sm(;) is
: ) 1

uniformly continuous on [0. ;]

(A) (a) is true, (b) is false
(B) (a) is false, (b) 1s true

(C) (a) and (b) are both true; and (b)
follows from (a)

(D) (a) and (b) are both true but (b) does
not follow from (a)
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In R, let C be the set of all closed sets,
B is the set of all Bold sets and M be
the set of all Lebesgue measurable sets
then ;

(A) McBcC B) CcBcM

(C) McCcB D) BcMcC

Let f: {a, b] = R be a bounded function,
and let P={x,, x;, %5, ..... , X} be a
partition of [a, b]. If m; and M;
respectively denote the infimum and
supremum of {f(x) : x e [x,_;, x]} and Q(x}
is the step function taking the values
m, forxe[x,_;, x]fori=1,2, ..., n, then
the Lebesgue integral of Q over [a, b] is :

@ [ Feax

® [ fwd

€ L@®H
D) U®/)

Let (X, d) be a metric space and

Gi-—-{x e X: d(x, x;) < —1“} for
n

(A) openin X

(B) not necessarily open in X
(C) equal to the empty set
(D) equal to X

Paper-III

10.

LT T

If E c R has the property “a¢ E, ce E
and a<b < cimplies be E” then E is:

{A) closed (B) dense

(C) connected (D)

compact

If R is the radius of convergence of the

o
power series Z a, x" then the radius
n=0

2]
a .
of convergence of 2 L x? is:

n=0n+1
A) 0 B) R
< = (D) 2R

Which of the following is a sub space of
the vector space RZ over the field R.

(A) {(a, b) e RxR/a=3b}
B) {(a,b)e RxR/a+2b+2=0}
(C) {(a, b) e RxR/a2=b?}

(D) {(a, b) e RxR/ab=10}
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11. Let B={(1, 0, 0), (1, 1, 0, (1,1, 1)} bea
basis of the vector space R3(R) and
T: R3 — R3be the Linear transformation
defined by :

T(x, y, 2)=(x+2y, y—2, z) for all
(x, , 2) € R3, Then the matrix (Tlg=

1 00
3 11
(1 1 3
0 01
1 0 0)
(©) 10
3 —1 1)
1 2 3)
00 1

12. The matrix
21 3+41 241
A=|4i-3 0 5 T
i—2 -5 -7

(A) Symmetric matrix
(B)

(C) Hermitian matrix

Skew symmetric matrix

(D) Skew Hermitian matrix
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13.

14.

15.

If the system of equations
%+ 2v+3z=5
2x+3y+z=-3
3x+2y+Az=p

has infinitely many solutions, then

.2?\—p.=
A) 15 B) 59
© -15 D) -59

The sum of Eigen values of the matrix

5 —6 —6
-Loa 2y,

3 -6 -4
Ay 5 By 4
€ s D 7

If u, v are elements of an inner product
vector space V (C), then

3
3 i flu+it @)=
n=0

(A) i<uv>
B) 4i<u,v>
C) <uyv>

D) 4<uv>

C-15-17




16.

17.

18.

19,
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Suppose C is the circle |z|=2 positively

1
oriented. Then, (J; 2% sinhz de=
—ri i
@ 3 B 3
2mi —2mi
© S ™ =3

Let C be the positively oriented unit
circle |z]=1. Then Izsec zdz=

Cc

(A) 2w (B) -2mi
(C) 0 D) m
Iee‘-«:itdt:
0

w k1
® 5 ® 5

m ™
© 5 ® 3

3
Tet C: |Z—1|=§ be the circle positi\_rely

oriented. Then ICOt"TZ dz=

C
(A 1 B) 2i
(C) mi D) 2mi

20.

21.

22.

23.

(AT R

Let C be the unit circle |z]=1 positively
oriented. Then.

6_1x,2 :
j- Tz"—15z"+1 dz =

Cz7-523+z—1

(A) 4m (B) 5w

(C) 6mi (D) Tmi

Suppose f(z)-_-%z_. Then residue of
2

f(z) atz=01s:

1
@ 60 ® o
CiZO D—l-
(©) ® T

Suppose z=x+1iy, |z|=r and Argz=0.
Then, real part of principal value of 2*
is e® cos (y Inr+6x), where A=

(A) xlnr—y0 (B) xlnr+y9

(C) ylnr—xo (D) x1lnr+x6

The number of generators of a cyclic
group of order 4900 1s :

(A) 420 (B) 840
(©) 1680 D) 1260
C-15-17
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24, If a set A has 4 elements, then the
number of binary operations that can be
defined on A is :

(A) 232 (B) 916
(C) 28 (D) 24

25. Let Z;; be the set of all residue classes

of integers modulo 11, Z1; =2, —{0}
and X,, denote the multiplication

module 11. Then in the group
(211, X11)»

7 X, (57

A 9 B 7

(C) 38 ® 3

26. A prime ideal in the ring (Z,+,) of all
integers which is not a maximal ideal
among the following is :

(A) 2Z (B) 3Z

(C) 5Z O {0}

27. IfZ_ denote the set of all residue classes
of integers modulo n, then the number
of non-zero nil potent elements in the

ring (Zyg, +1g X1 18:

A) 1 (B) 3
€ 5 D) 7
Paper-II1

28.

29,

30.

If Z_ denote the set of all residue classes
of integers modulo n, then the
number of zero divisions in the ring

(Zgy, + 94 X g4), other than 0, is :
A 3 B) 4
(C) 6 (D) 8

Let X={1, 2, 3, 4} and 7={¢, X, {1, 2},
{3, 4}}. If A={2, 3}, Then, in the
topological space (X, 1), Ais :

(A) a dense subset

(B) a nowhere dense subset

(C) an open set

(D) a closed set

In the metric space R with Euclidean
metric, a compact set among the
following is :

@A @95 ® (7.8

© 23] (D) (5, 6]
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31. Eliminating ¥ from the system 33. The particular solution y of
y'—=2y'~3y =64 xe~*¥is:

%_:tg =x(1-y) (8)  y(x)=e*(8x2+4x-1)
(B) y(x)=e *(8x%-4x+1)

(C) y(x)=e~248x%—4x—1)

(D) y(x)=—e " ¥8xZ+4x+1)

—=-‘y(1 x)

We obtain the nonlinear second order
equation satisfied by the function x(t) | g4. The Green’s function G(x, s) that is

as . associated with the general solution of
_ the boundary value problem
d%x dx | o dx Y’ ~y"=fx), 0) =0, y())=0is :
(A) -&;-é-—x(x 1)—t+x (1—x)+(a?) .

x(l—-8), 0<ss< x

. Glx, 8)=
. » (4) Sk s(x—1), xss=1
®B) xd—;=x(x l)ddx+x2(1 x)+(§x)
dt t t s(l—x), 0ss=< x

x(1-8), xss=s1

)
B) G, 9)

2
(©) xzd—-é- x(l—x)—-+x(1 x )+(dx)
dt dt © G 5= x(1—s2), 0<s< x
8(l-x), x<s<1
d2

{D) =x(x— 1)—+x .(1— x)+(
dt?

dx)2
dt

(1—-x) O0<ss x
G(x, s)=
D) x(1-s ) x<s<1

32, All the numbers A for which the
boundary value problem y"+Ay=0, | 35. A solution of :
y(0)=0 and »(1)=0 has a nontrivial .
solution are : o2u  _3%u %

amZ  xdy 3P

(A) A=nmn=1],2, ...
(A) u=f(y+3x)+gy+3x)
B) u=f(y+3x)+xg(y+3x)
(C) u=fly+4x)+gly+2%)
(D) A=nwi n=1,2, ... ' D) u=fly+x)+gly+2%

(B) A=nir? n=12, ...

(C) A=ndnZ n=12 ...

Paper-I11 ' ; 8 C-15-17
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836. The region in which, the equation

d%u %u Bzu
axay dy2

(x —1)

is elhptlc is :

(A) {9 :x2+y2> 1)
(B) {x »:2%+y2=1
©) xy:2+yi<1}

D) RxR

87. The general solution of the equation :

a?‘z—-{?z—=x yis:
3 x° 8y2

(A) z=2x(x—y)+Q(x+y) +Qylx—y)

B) z=2x2(x-y)2+Q(x+y)+Q,
(x—y)

(C) z=—12-x(x—y)+Q1(x+y)+Q2(x-y)

(D) =-11-x(x—y)_2+Q1(x+y)+Q2
(x+y)

Paper-III

38.

39.

The solution of the two - dimensional
Laplace equation :

satisfying the boundary conditions
u@, V=0,0sy=<b

u(a, y)=0,0<y<b !

and u(x, 0)=0, 0 <x<ais

(A) ulx, y)= X ¢ysin AT cosh 2T
n=1 a a
By u(x, y)= 3 c,[,cos:,n X cosh 2T
(B}
n=1 a a
©) ux, y)= E cnsm X sinh 2T
n=1 a a

(D) wx, y)= E Cp cos XL ginh 2TY

n= a a

In the Gauss elimination method, to
solve a linear system of n equations in n
unknowns, the number f(n) of operations
required is :

@A) 0(n)

(B} 0(n?
(€) 0@d)
(D) O(n%

C-15-17
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41,

Suppose f(x) is continuous on the
interval [a, b] and that f{a) fib) < 0. Ifp
1s a zero of f(x) in [a, b] and if {p } is a

-sequence approximating p, then
[P~p| <:

@) b;,a nz1

® gyl

(C) Z;?,nzl

(D) b‘)—na,n?-l

The extremal of the functional

2
J':(y+y' +2ye*)dx is :

(A) y=% xe* +Cie* +Coe™*

(B) y=Cxe*
(C) y=Cie*+Cpe™*

(D) y=(C,+Cyx)e*

Paper-III
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42. The shape that maximizes the area

43.

44.

enclosed by a rectangle of given
perimeter p is a :

(A) parallelogram
(B)

(C) trapezium

rhombus

(D) square

I K(x, )= x(1 t)1.f0 xst=l
t(l-x)if0sts x <1

then the eigen functions of

fx)= )\I;K(x, t) £(t) dt are:

(A) sin mwx, meN
(B) cos mmwx, meN
{(C) sinh mmx, meN
(D) cosh mwx, meN

The nonzero eigen value of the linear
integral equation

fix)= )\j';ex et f(H)dtis:

2
@ o
2
(B) o2 1
2
(© e +1
2
(D) e—1

C-15-17
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45. A mass of 2 kg is thrown horizontally
due north with velocity 5 km per second
in latitude 45° N. The magnitude of
Coriolis force acting on the mass is :

(A) 0.2576 N
(By 0.5142N
(C) 1.0284N
(D) 2.0568N

46. A fair coin is tossed repeatedly unless a
head is obtained. The probability that
the coin has to be tossed at least four
times is :

(&)

Q0| ==

B

| =

©

o=

D)

47. The function f(xX)=kx (1-x), 0 <x <1
defines a p.d.f, if k is :

1
(A) r

W

®) -

Lo | =

©

D)

R

Paper-III

48. Let X be a random variable with p.d.f

49.

1
f(x)=§- exp [-"325), x > 0. Then

moment generating function of X is :

1

A) 1 9t

2 1
@ 12t 2

A) X
1
B) -—X— —_ 1

(C) _— 1

(D) Both (A) and (B)

C-15-17




50.

51.

Let X be a random variable with p.d.f.
flr)=1,0<x<1. Then

P X---l -I—J 18 :
2 12

45
49

=2

(A)

(B)

(SRR

©)

)

The transition matrix of a Markov chain

1 2

' 1{0 1 .
is given by P=2[(1) 0]. Then the chain

18 :
(A) reducible
(B) ergodic

(C) not absorbing

(D)

regular

Paper-III
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52.

a3.

54,

(©

O O

Let X(t) be a Poisson process with
parameter A. Then E[{X (t)—X(s)}?] for
t>sis:

(A)
(B)
(9
(D)

AS(1 +At)
At —s)
AZ 2

Mt—8) [1+A(t—9)]

Let X(1)’ X(,z), X(3) be the order statistics
of 1'1'.d random variables Xy Xg, Xy
with common p.d.f.

fx)=Be ", x>0,>0
The jOint pdf of X(I)' X(2)' X(3) is :

3 B3(—By;—Byy— By,
¥Y1<Y3<U3

(A)

(B) Ba exp(— By, — Bys—By3),

Y1<¥2<UY3

3! exp(- By, ~Byg— By3),
Y1 <Yy <Y3

31 B3 exp(—By; — By, —Byy),
Y1<Y2<u;

D)

A man rolls a fair die agaih and again
until he obtains 4 or 5. The probability
that he will require 4 throws is :

(Ay 2335
B
(C)

D)

2/34
23/34

23/32

C-15-17
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55. Let X~N(1, 2), Y~N(1.5, 1) be two | 58. In sampling from a normal population

independent random variables. Then —2
X+Y is distributed as : X" is sufficient for :
(A) N(@3.5,2 (B) N (25, 3) (A) p2
(C) N@25,2 (D) N(3.5,1)
B
56. If a binomial random variable has € o?+p?
mean =4 and variance = 3, then its third
central moment is : (D) None of these
1
A -

59. Any size of likelihood ratio test is

(B) 5 attainable if the distribution function of
2 the likelihood ratio is :
3 (A) degenerate

©
- (B) absolutely continuous

D) 1

(C) decreasing

(D) no jump points
57. Let X,, X,...... X, be I'1'.d random
variables with E[X;|X < o for some
positive integer K. Then

§ XJKIn—P—) 60. The maximum likelihood estimator is
=] generally :

J

(A) EX; as now (A) consistent

2

EX
(B) "M asn—ow (B) sufficient
(€©) E(XK) as now (C) unbiased

@) V(XK) asnoe (D) unique

Paper-I111 13 C-15-17




61.

62.

63.

In sampling from N (u, o). The critical
region for testing Hop=p=p against
0

Hy:=p <pis of the form :
0 1

(A) x <Ay

B) x>N

©) §<#+%

D) P.(J_C<’\2_/Ho)=°‘

The distribution of likelihood ratio in
large samples is :

(A) Normal

(B) Chi-square

(€) t2

(D) Standard normal

The pivot is a function of :

(A) unbiased statistic

(B) consistent statistic

(C) sufficient statistic and parameter

(D) sufficient statistic

Paper-III
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65.

66.

B LU

64. This test ignores the magnitude of the

difference between the observations and
the hypothesized quantile.

(A) wilcoxon - signed rank test
(B) run test
(C) kolmogorov - smirnov test
(D) sign test

Two jointly multinormal vectors are
independent :

(A) if they are uncorrelated

(B) if and only if they are uncorrelated

(C) if the covariance matrices are
positive definite

(D) the individual elements each have

univariate normal

If M~Wp (, m) and B is a (p X q) matrix,
then B'MB~ :

(A) Wp (B'2B, m)
®) Wp(, m)
(Cy Wq (B'EB, m)
D) Wq(, m)

C-156-17
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67.

68.

69.

70.

The normal equations in the linear
model Y=Xp+e are:

&kx1)
(A) XXp=XY (B) XX)=X'Y
(C) X'Yp=XY D) XXp=X'Y

In the simple linear regression model
the distribution of the test statistic for
testing the significance of the
independent variable is :

(A) F(2,n-2)

B) t,_,

(€ ti_p

(D) Standard normal

The finite population correction is given
by the quantity :

n N-—n
@ 5 ® 5

N-n n
© @ \y

This allocation gives a self - weighing
sample :

(A) optimum

(B) probability proportional to size
(C) proportional

(D) equal

Paper-III

71.

72.

73.

74.

75.

A systematic sample does not yield good
results if :

(A) wvariations in units is periodic

(B) wunits at regular intervals are
correlated

(C) Dboth (A) and (B)

(D) None of (A) and (B)

The relationship between plot size x and
plot variance V_ is given by, in the usual
notation :

(A) logx=log V,~b'log V,
(B) log x=log V,-b'log V,
(C) logV,=logx —b'logV,
(D) log V.= log V;~b'log x

The error mean square for RBD was 60
percent to that of CRD error mean
square was due to :

(A) Fairfield Smith
(B) Cox

(C) Fisher

(D) Cochran

The failure distribution with a constant
hazard rate is :

(A) Weibull
(B) Exponential
(C) Log-normal
(D) Gamma

The mean Waiting time formula in M|G|1
was due to :

(A) Harris

(B) Gauss

(C) Pollaczek - Khinchin
(D) Erlang

-00o0-
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