| SUBJECT CODE SUB. | | JE(| CT CECT COMME | PAPER | | | |---|-------------------|-------------|----------------|--|--|--| | B-16-17 | PHYSIC | CAL | 5 | CIENCE | | | | | | | <u> </u> | 56 | | | | HALLTICK | ET NUMBER | | ┪┝ | QUESTION | BOOKLET NUMBER | | | | | | | | 204081 | | | OMR SHEET NUMBER | | ا آ | 20400 L | | | | | | | | | | | | | DURATION | MAXIMUM MA | BK6 | LI L | MBER OF PAGES | NUMBER OF QUESTIONS | | | 1 Hour 15 Minutes | 100 | - Alle | | 12 | 50 | | | his is to certify that, the | | e above p | orti | | | | | | | • | | v | | | | | | | | | 32. | | | Candidate's Signature | | | | Name and Signature of Invigilator | | | | INSTRUCTIONS FOR THE CANDIDATES Write your Hall Ticket Number in the space provided on the | | | | అభ్యర్థులకు సూచనలు | | | | top of this page. | | | 1 | ఈ పుట పై భాగంలో ఇవ్వబడిన స్థలంలో మీ హాల్ టికెట్ నంబరు రాయంది. ఈ స్థశ్న ప్రతమ యాఖై బహుళైచ్చిక స్థశ్నలను కలిగి ఉంది. | | | | | | | ۱. | 3. పరీక్ష ప్రారంభమున ఈ ప్రక్నాప్రతము మీకు ఇవ్వబడుతుంది. మొదటి ఐదు | | | | will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as | | | | నిమిషములలో ఈ <u>ప్రక్నాపత్రమును తెరిచి కింద తెలిపిన అంకాలను తప్పనిసరిగా</u>
సరిచూసుకోండి. | | | | below: | • | | 1 | | డదానికి కవర్ోపేజి అంచున ఉన్న కాగితపు సీలు | | | (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet. (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given. (iii) After this verification is over, the Test Booklet Number | | | | చించంది. స్టిక్కర్ సీలులేని మరియు ఇదివరకే తెరిచి ఉన్న బ్రహ్నాపత్రమును
మీరు అంగీకరించవద్దు.
(ii) కవరు పేజి పై ముద్రించిన సమాచారం బ్రహకరం ఈ బ్రహ్నపత్రములోని | | | | | | | | | | | | | | | | పేజీల సంఖ్యను మరియు | ప్రశ్నల సంఖ్యను సరిచూసుకోండి. పేజీల సంఖ్య | | | | | | | సంబంధించి గానీ లేదా | సూచించిన సంఖ్యలో (ప్రత్నలు లేకపోవుట లే | | | | | | | నజ్మత కాకవావుద లద
తేదాలుందుట వంబి దోగ | ా ప్రశ్నలు క్రమపద్ధతిలో లేకపోవుట లేదా ఏవై
షపూరిఠమైన ప్రశ్న ప్రతాన్ని వెంటనే మొదటి ఐ | | | | | | 1 | నిమిషాల్లో పరీక్షా పర్యవే | <u>ඡූ</u> ඡාనි కి తిరిగి ఇ చ్చివేసి దానికి ఐదులుగా సరి | | | | | | | | కోండి. తదనంతరం ప్రత్నప్రతము మార్చబడ | | | | | | | అదనపు సమయం ఇవ్వబడదు.
(iii) పై విధంగా సరిచూసుకొన్న తర్వాత (పశ్నాషత్రం సంఖ్యను OMR పత్రము
పై అదేవిధంగా OMR పత్రము సంఖ్యను ఈ (పశ్నాషత్రము పై నిర్ధిష్టస్థలంలో | | | | | | | | | | | | should be entered in | the OMR Sheet and | the OMR | 1 | రాయవలెను.
(పథి చన్నకు నాలుగు చనణాన | තාණ (නමනායන්නා (A) (B) (C) නාල | | | Sheet Number should be entered on this Test Booklet. Each item has four alternative responses marked (A), (B), | | | 1 | (D) లుగా ఇవ్వబడ్డాయి. (పతి (పశ్చకు సరైన (పతిస్సందనను ఎన్నుకాని కింద | | | | (C) and (D). You have to darken the circle as indicated below on the correct response against each item. | | | | తెలిపిన విధంగా OMR పత్రములో ప్రతి ప్రశ్నా సంఖ్యకు ఇవ్వబడిన నాలుగు | | | | Example: (A) (B) (D) | | | | వృత్తాల్లో సరైన (పతిస్పందనను సూచించే వృత్తాన్ని బాల్ పాయింట్ పెన్ తో కింద
తెలిపిన విధంగా పూరించాలి. | | | | where (C) is the correct re | | | | ఉదాహారణ : (A) (B) 🌑 |) (D) | | | Answer Sheet given to you. If you mark at any place | | | Ę | (C) సరైన బ్రతిస్పందన్ అయి | | | | other than in the circle in the OMR Answer Sheet, it will not be evaluated. | | | | ఇవ్వబడిన వృత్తాల్లోనే పూరించి | ప్రశ్నపత్రముతో ఇవ్వబడిన OMR పత్రము పై
గుర్తించాలి. అలాకాక సమాధాన పత్రంపై వేర | | | Read instructions given ins | side carefully. | | | చోట గుర్తిస్తే మీ (పఠిస్పందన | మూల్యాంకనం చేయబడదు. | | | . Rough Work is to be done in the end of this booklet If you write your name or put any mark on any part of the | | | 1 - | 6. (పశ్న పత్రము లోపల ఇచ్చిన సూచనలను జాగ్రత్తగా చదవండి.7. చిత్తుపనిని (పశ్నప(తము చివర ఇచ్చిన ఖాళీస్థలములో చేయాలి. | | | | OMR Answer Sheet, except for the space allotted for the | | | 8. | 8. OMR పత్రము పై నిర్జీత స్థలంలో సూచించవలసిన వివరాలు తప్పించి ఇతర | | | | relevant entries, which may
render yourself liable to di | | y, you Will | | ్థలంలో మీ గుర్తింపును తెలిపే | ి విధంగా మీ పేరు రాయడం గానీ లేదా ఇక | | | The candidate must han | dover the OMR Ans | | I O | - బెబ్బాలను పెట్టడం గాని చేసిన
- పరీక్ష పూర్తయిన తరాంత మీ (| ల్లయితే మీ అనర్హతకు మీరే జాధ్యులవుతారు.
DMR పుతాన్ని తప్పనిసరిగా పరీక్ష పర్యవేక్షకుడి | | | compulsorily and must not carry it with you outside the Examination Hall. The candidate is allowed to take away | | | | ఇవ్వాలి. వాటిని పరీక్ష గది లయ | టకు తీసుకువెళ్లకూడదు. పరీక్ష పూర్ణయిన తరువా | | | | | | | అభ్యర్థులు (పశ్న పణ్రాన్ని, OM | R పత్రం యొక్క కార్బన్ కాపీని తీసుకువెళ్లవచ్చ
ెక్ట్ నాలకోం ఉపత్రాకం కార్మి | | | Booklet at the end of the | examination. | | I TO | . నీరి/నల్ల రంగు బాల్ పాయింటి
. లాగరిథమ్ బేబుల్స్, క్యారిక్యు | ున మాత్రమ ఉపయోగించారి.
లేటర్లు, ఎల్మక్టానిక్ పరికరాలు మొదలగున | | | 11. Use of any calculator or log table etc., is prohibited. | | | | పరీక్షగదిలో ఉపయోగించడం నిషేధం. | | | | | | | 410 | . తప్పు సమాధానాలకు మార్ముల | are an extension | | WRITER OF Paper-II B-16-17 # # PHYSICAL SCIENCES ### Paper - II - 1. The curl of a vector \overrightarrow{F} is $2\hat{x}$. Identify the appropriate vector field \overline{F} from the choices given below: - (A) $\vec{\mathbf{F}} = 2z\hat{x} + 3z\hat{y} + 5y\hat{z}$ - (B) $\overline{F} = 3z\hat{y} + 5y\hat{z}$ - (C) $\overline{F} = 3x \hat{y} + 5y \hat{z}$ - (D) $\overline{F} = 2\hat{x} + 5y\hat{z}$ - 2. Match the following physical quantities in Group-I with their dimensions in Group-II: ## Group - I ### Group - II - (a) Energy - (i) $ML^2 T^{-3}$ - (b) Power - (ii) $ML^{-1}T^{-1}$ - (c) Momentum - (iii) $ML^2 T^{-2}$ - (d) Modulus of elasticity - (iv) $ML^1 T^{-1}$ - (e) Viscosity - (v) $ML^{-1}T^{-2}$ ## Codes: - (a) (b) (c) (d) (e) - (A) (iii) (i) (iv) (v) (ii) - (B) (i) (ii) (ii) (iv) (v) - (C) (iii) (i) (v) (ii) (iv) - (D) (ii) (v) (iii) (i) (iv) - 3. Stokes theorem relates the transformation from: - (A) Surface integral to volume integral - (B) Volume integral to line integral - (C) Line integral to surface integral - (D) Volume integral to surface integral - 4. Match the following: - (a) Singular matrix (i) sum of the diagonal elements of a square matrix - (b) Adjoint of a (ii) transpose of the matrix matrix formed by the cofactors of the elements of its determinant - (c) Trace of a (iii) largest of any matrix non-vanishing minor of the matrix - (d) Rank of a (iv) square matrix with determinant zero #### Codes: - (a) (b) (c) (d) - (A) (ii) (iii) (iv) (i) - (B) (iv) (ii) (i) (iii) - (C) (iv) (iii) (ii) (i) - (D) (i) (ii) (iii) (iv) The eigen values of the matrix 5. $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$ are : - (A) 0, 1, 2 - (B) 0, -1, -2 - (C) 0, 1, -2 - (D) 0, -1, 2 - 6. The equation y(x)y''(x) - xy'(x) + 2y(x) = 3 is a: - linear homogeneous second order ordinary differential equation - non-linear homogeneous second **(B)** differential order ordinary equation - linear inhomogeneous second differential ordinary order equation - (D) linear homogeneous second order partial differential equation - If f(s) is the Laplace transform of F(t), then the Laplace transform of F(at) is: - (A) f(s/a) - f(a/s) - (C) $\frac{1}{a} f\left(\frac{s}{a}\right)$ (D) $\frac{1}{a} f f\left(\frac{a}{s}\right)$ The mean of the Poisson's distribution $$P(r)=\,\frac{m^re^{-m}}{r!}\ is:$$ - (D) - 9. The probability of happening an event A is $\frac{1}{3}$ and probability of happening the event B is $\frac{1}{4}$. Both A and B events are independent. Then the probability of happening both events A and B simultaneously will be: - The binomial expansion of $(q+p)^n$ is given by $$(q+p)^n = q^n + {}^nc_1 q^{n-1}p^1 + {}^nc_2 q^{n-2}p^2 + {}^nc_r q^{n-r}p^r + {}^nc_r + p^n.$$ The mean of binomial distribution is: - (D) nq # 11. If m is the mass and E is the total energy of a free particle, the speed v of the particle according to special theory of relativity is: (A) $$v = c\sqrt{1 + \frac{mc^2}{E}}$$ (B) $$v = c\sqrt{1 - \frac{mc^2}{E}}$$ (C) $$v = c\sqrt{1 - \frac{mc}{E}}$$ (D) $$v = c\sqrt{1 - \left(\frac{mc^2}{E}\right)^2}$$ 12. In case of a linear triatomic molecule of AB_2 type, the relation between the eigen frequencies ω_1 , ω_2 and ω_3 can be represented as: (A) $$\omega_1 = \omega_2 = \omega_3$$ (B) $$\omega_1 = 0$$, $\omega_2 = \omega_3$ (C) $$\omega_1 = 0$$, $\omega_2 \neq \omega_3$ (D) $$\omega_1 = \omega_2 \neq \omega_3$$ - 13. For a particle moving under a fixed central force: - (A) the motion of the particle is always on a circular path - (B) its kinetic energy remains constant - (C) its angular momentum is conserved - (D) motion of the particle do not confine to a plane 14. The Lagrangian of a simple pendulum of length l and mass m is: (A) $$L = \frac{1}{2}ml^2\theta^{*2} + mgl(1 - \cos\theta)$$ (B) $$L = ml^2 \theta^{\bullet 2} + mgl (1 - cos\theta)$$ (C) $$L = \frac{1}{2} m l^2 \theta^{-2} - mgl (1 - \cos\theta)$$ (D) $$L = ml^2 \theta^{-2} - mgl (1 + cos\theta)$$ 15. There are n number of particles of masses each of mass m at distances a, ar, ar²,, arn units respectively from origin on the X-axis. The distances of centre of mass of the system from the origin on X-axis for r≥1 is: (A) $$X_{cm} = \frac{a(r^n + 1)}{n(r - 1)}$$ (B) $$X_{cm} = \frac{a(r^n + 1)}{n(r + 1)}$$ (C) $$X_{cm} = \frac{a(r^n - 1)}{n(r - 1)}$$ (D) $$X_{cm} = \frac{a(r^n - 1)}{n(r + 1)}$$ ## 16. Match the following: ### List - I List - II - (a) Symmetric top (i) $I_1 \neq I_2 \neq I_3$ - (b) Asymmetric top(ii) $I_1 = I_2$ and $I_3 = 0$ - (c) Spherical top (iii) $I_1 = I_2 \neq I_3$ - (d) Rotator (iv) $I_1 = I_2 = I_3$ ### Codes: - (a) (b) (c) (d) - (A) (i) (iii) (iv) (ii) - (B) (iii) (i) (iv) (ii) - (C) (ii) (i) (iv) (iii) - (D) (iv) (i) (iii) (ii) # 17. Assertion (A): If there is no external force on a system of particles, then the centre of mass will not move. # Reasoning (R): If net external force on a system of particles, then the centre of mass will not move. #### Codes: - (A) Both (A) and (R) are true and (R) is the correct explanation of (A) - (B) Both (A) and (R) are true and (R) is not the correct explanation of (A) - (C) (A) is true but (R) is false - (D) (A) is false but (R) is true - 18. The vector potential \overline{A} related to the magnetic field \overline{B} by $\overline{B} = \overline{\nabla} \times \overline{A}$. If the magnetic field \overline{B} is along the z-direction, then the components of \overline{A} are: - (A) $A_x = A_y = A_z = 0$ - (B) $A_x = -BY, A_y = A_z = 0$ - (C) $A_x = -BZ$, $A_y = BY$, $A_z = 0$ - (D) $A_x = -BX, A_y = BY, A_z = BZ$ - 19. An insulating sphere of radius 'a' carries a charge density $\rho(\overline{r}) = \rho_0 (a^2 r^2) \cos \theta$, r < a. The leading order term for the electric field at a distance d, far away from the charge distribution, is proportional to: - (A) d^{-1} - (B) d^{-2} - (C) d^{-3} - (D) d^{-4} - 20. The electric flux density passing through a hemispherical surface of radius R placed in a uniform electric field \(\vec{E}\) with the axis parallel to the electric field \(\vec{E}\). - (A) $2\pi R^2 E$ - (B) πRE - (C) $2\pi R^3 E$ - (D) $\pi R^2 E$ - The electrostatic pressure at any point 11. on the surface of a conductor of surface charge density o is: - (A) σ^3/ϵ_0 - (C) σ/ϵ_0 - (D) σ^2/ϵ_0 - 12. A circular loop of radius 'a' carries a uniform linear density of charge. It is set in rotation about its axis with an angular velocity, then the magnetic moment of the rotating loop is proportional to: - (A) a^3 - (C) $a^{3/2}$ - (D) a^4 - Solution of Laplace equation in spherical Polar coordinates contains: - (A) Bessel function - Gamma function (B) - Associated Legendre function (C) - Neumann function - 4. A sphere of radius R carries a Polarization $\vec{P}(r) = K\vec{r}$, where K is a constant and r is the vector from the center. Then the bound charges: - (A) $\frac{K}{R}$, 3K - (B) KR, -3K - (C) KR^2 , -3K (D) K, $-3KR^2$ - 25. If \hat{n} is the polarization vector and \hat{k} is propagation direction of a plane electromagnetic wave, then: - (A) $\vec{n} = \vec{k}$ (B) $\vec{n} = -\vec{k}$ - (C) $\vec{n} \cdot \vec{k} = 0$ (D) $\vec{n} \times \vec{k} = 0$ - 26. A dielectric material is placed in an electric field E₀. The direction of the depolarization field E_p is: - in the direction of E_0 - (B) opposite to E_0 - (C) perpendicular to E_0 - (D) at an angle to E_0 - 27. The first excited state of hydrogen atom in four-fold degenerate. The four degenerate states are: - 1200>, 1201>, 1211>, 12, 1, -1> - 1200>, 1210>, 1121>, 1211> - (C) 1200>, 1210>, 1211>, 121, -1> - 1000>, 1200>, 1211>, 121, -1> - 28. The expression for the differential operator \hat{L}_z in spherical polar coordinates is: - (A) $\frac{\partial}{\partial \phi}$ (B) $i\hbar \frac{\partial}{\partial \phi}$ - (C) $i\hbar \frac{\partial^2}{\partial \phi^2}$ (D) $-i\hbar \frac{\partial}{\partial \phi}$ - 29. In linear harmonic oscillator problem, if a⁺ and a are creation and annihilation operators, then the commutator [a, a⁺] is: - (A) 0 - (B) ħωa+ - (C) ħωa - (D) - 30. Which of the following is not true? - (A) $[L_r, L^2] = 0$ - (B) $[L_x, L_y] = i\hbar L_z$ - (C) $[L_x, L_z] = i\hbar L_y$ - (D) $[L_y, L_z] = i\hbar L_x$ - 31. If two operators A and B commute with each other then they: - (A) are equal - (B) have the same eigen values - (C) possess a complete set of simultaneous eigen function - (D) are null operators - 32. Let $|\psi_0\rangle$ is the wave function of the ground state. If $|\psi_1\rangle$ be the trial wave function of the excited, then the energy of the excited state can be determined provided: - $(A) \quad <\psi_0 \mid \psi_1 > = 0$ - (B) $< \psi_0 | \psi_1 > = 1$ - (C) $<\psi_0 \mid \psi_1 > \text{is not determined}$ - (D) None of these - 33. In Dirac notation |A> <B| can be represented by a: - (A) C number - (B) Column matrix - (C) Row matrix - (D) Square matrix - 34. If $\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$ is the wave function of a particle moving along x-axis in the region $0 \le x \le L$ then the expectation value of its momentum is: - (A) zero - (B) negative - (C) positive - (D) infinity - 35. A microcanonical ensemble represents: - (A) a system in contact with heat reservoir - (B) an isolated system in equilibrium - (C) a system that can exchange particles with its surroundings - (D) a system under constant pressure - 36. The change in Entropy is: - (A) Positive in a reversible process - (B) Negative in an irreversible process - (C) Positive in an irreversible process - (D) Negative in a reversible process - 37. In an isothermal change, the internal energy of molecules: - (A) does not change - (B) increases - (C) decreases - (D) exponentially increases and then abruptly decreases - 38. If a given degree of freedom appears quadratically in the Hamiltonian, then the average contribution to the total energy due to this degree of freedom is: - (A) KT - (B) $\frac{1}{2}$ KT - (C) $\frac{3}{2}$ KT - (D) $\frac{5}{2}$ KT - 19. The ensemble average of an operator is given by: - (A) $\langle A \rangle = \frac{\text{Tr } (e^{-\beta H}A)}{\text{Tr } (e^{-\beta H})}$ - (B) $< A > = Tr(e^{-\beta H}) Tr(e^{-\beta H} A)$ - (C) $\langle A \rangle = \frac{\text{Tr } (e^{-\beta H})}{\text{Tr } (e^{-A})}$ - (D) $\langle A \rangle = Tr(e^{-\beta H} A)$ - 40. An ideal gas expands reversibly from volume V₁ to V₂ at a constant temperature. The change in entropy is: - (A) zero - (B) $nRT ln \left(\frac{V_2}{V_1}\right)$ - (C) $nR ln \left(\frac{V_2}{V_1}\right)$ - (D) $\frac{nR}{T} \ln \left(\frac{V_2}{V_1} \right)$ - 41. Equipartition theorem is valid: - (A) Only in M B systems - (B) Only in B E systems - (C) Only in F D systems - (D) In all systems - 42. S=K_BlnW is the well known Boltzman equation where W is the thermodynamic probability. W can take the values from: - (A) 0 to 1 - (B) 0 to ∞ - (C) 1 to ∞ - (D) $-\infty$ to ∞ - 43. To have the Tunnel phenomenon in a diode: - (A) n-type fermi level should be below the conduction band and p-type fermi level should be above the valence band - (B) n-type fermi level should be below the conduction band and p-type fermi level should be below the valence band - (C) n-type fermi level should be above the conduction band and p-type fermi level should be above the valence band - (D) n-type fermi level should be above the conduction band and p - type fermi level should be below the valence band - 44. Negative feedback in amplifier increases: - (A) gain - (B) distortion - (C) bandwidth - (D) output impedance - **45.** A counter circuit counts from 0 to 2048. The number of flip flops used are: - (A) 10 - (B) 11 - (C) 12 - (D) 13 - 46. The output of an exclusive OR gate is: - (A) $\overline{A} \overline{B} + A B$ - (B) $\overline{A} B + A \overline{B}$ - (C) $\overline{A} B + \overline{A} \overline{B}$ - (D) $A \overline{B} + \overline{A} \overline{B}$ - 47. The instruction LXIH, 2050 in 8085 microprocessor means: - (A) Loads 2050 into HL register pair - (B) Loads 2050 into H register - (C) Loads 2050 into L register - (D) Loads 2050 into Accumulator # - 48. Match the List I with List II and choose the correct answer: - (a) MVI A, 2C - (i) Jump to 2050 if the accumulator content is not zero - (b) JNC 2050 - (ii) Move immediately 2C to A register - (c) MOV A, M - (iii) Jump to 2050 if the carry flag is reset - (d) JNZ 2050 - (iv) Move the contents of memory to the accumulator #### Codes: - (a) (b) (c) (d) - (A) (iii) (ii) (iv) (i) - (B) (iv) (i) (ii) (iii) - (C) (ii) (iii) (iv) (i) - (D) (iii) (iv) (i) (ii) - 49. For the given circuit the output waveforms at point A and point B are: - (A) At A = Rectangular wave; at B = Triangular wave - (B) At A = Triangular wave; at B = square wave - (C) At A = Saw-tooth wave; at B = Triangular wave - (D) At A = Triangular wave; at B = Saw-tooth wave - 50. A set of readings has a wide range and therefore it has: - (A) Low precision - (B) High precision - (C) Low accuracy - (D) High accuracy - o 0 o - Space For Rough Work