

Question Booklet and Answer Key

For Recruitment Test

Held on 21.02.2015 (Evening)

Post: TGT Paper-II

(Mathematics)

'A' Series

AND THE CONTRACTOR OF THE PARTY OF THE PARTY.

Adda 247

1.	The vector spaces	formed by the solution	space of the set of equ	uations $x_1 + x_2 + x_3 = 0$,			
	$3x_1 + 2x_2 = 0$ and $x_2 - x_3 = 0$ has dimension:						
	1) 0	2) 1	3) 2	4) 3			
	Emilia Diologia	a se work in service s	sumula "El sapro lu	dental a sales and a comp			
2.	The inequality z	$-2 \mid < \mid z - 4 \mid$ represents	s the half plane:				
	1) Re $(z) \ge 3$	2) Re $(z) = 3$	3) Re (z) ≤ 3	4) none of these			
	Land Al						
3.	If span of $S = \{(1,$	$1, 0), (2, 1, 3)$ over \mathbb{R}	is contained in \mathbb{R}^3 , the	en which one of the			
	following vectors	is not in the span of S?	retendio al balli				
	1) (0, 0, 0)	2) (3, 2, 3)	3) (1, 2, 3)	4) (4/3, 1, 1)			
		the year and rela	est As a code	po his marry, all 1 An			
4.	The smallest +ve integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is:						
	1) 8	2) 16	3) 12	4) none of these			
5.	If two zeros of a polynomial, $2x^4 - 3x^3 - 3x^2 + 6x - 2$, are $\sqrt{2}$ and $\frac{1}{2}$ then other two zeros						
	are:						
		2) $-\sqrt{2}$ and $-\frac{1}{2}$	3) $-\sqrt{2}$ and 1	4) none of these			
	1) - v z alid - 1	2) - VZ and 2	3) V2 and 1				
	seyd) to shou (*)	A SIGNALL I		then			
6.	Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2, x_2)$, then						
	rank of T is:	Chinas stran lans with	2)1	4) 3			
	1) 0	2) 2	. 3)1	- 19.4) 3 - 1.781(8)			
7	A guryay shows th	nat 63% of the American	as like cheese and 76%	% like apples. If $x\%$ of the			
7.		A survey shows that 63% of the Americans like cheese and 76% like apples. If x % of the Americans like both cheese and apples, then :					
	1) $x = 39$	2012	3) $x = 63$	4) none of these			
	1) x - 39	2) 39 S X S 03	10				
8.			as 4 and 6 respectively	v, then dim hom(V, U) is:			
0.	1) 4	2) 6	3) 10	4) 24			
	1) 1,						

9.	Equations of the straight lines touching both $x^2 + y^2 = 2a^2$ and $y^2 = 8ax$ are:						
	$1) x \pm y \pm 2a = 0$	$2) x - y \pm 2a = 0$	$3) x \pm y + 2a = 0$	4) None of these			
10.	Lat C ha a arrays at	f order 15. Then the nu	unhan af arilary auhana	and of C of order 2 is a			

1) 0 2) 1 3) 3 4) 5

11. If x, y, z are in AP with common difference d and rank of the matrix $\begin{bmatrix} 4 & 5 & x \\ 5 & 6 & y \\ 6 & k & z \end{bmatrix}$ is 2, then

values of d and k are:

- 1) d = x/4; k = 7 2) d is arbitrary; k = 7 3) d = 5; k = 5 4)none of these
- 12. The system of equations $k \cdot x + y + z = 1$, $x + k \cdot y + z = k$ and $x + y + k \cdot z = k^3$ does not have a common solution if k is equal to :
 - 1) 0 2) 1 3) -1 4) -2
- 13. For which value of λ does the line $y = x + \lambda$ touch the ellipse $9x^2 + 16y = 144$? 1) $\lambda = \pm 5$ 2) $\lambda = 5$ 3) $\lambda = -5$ 4) $\lambda = 1$
- 14. The minimal polynomial of the 3×3 real matrix $\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$ is:

 1) (x-a)(x-b) 2) $(x-a)^2(x-b)$ 3) $(x-a)(x-b)^2$ 4) none of these
- 15. Equation of a parabola with vertex at origin, symmetric about y-axis and passes through a point (2, -3) is:
 - 1) $y^2 = \frac{9}{2}x$ 2) $x^2 = -\frac{4}{3}y$ 3) $x^2 + y^2 = 13$ 4) none of these
- 16. If $f(x) = \begin{cases} 1, & \text{if } x \text{ is a rational number} \\ 0, & \text{if } x \text{ is an irrational number} \end{cases}$; then what is the value of $f \circ f(\sqrt{3})$?

 1) 0

 2) 1

 3) both 0 and 1

 4) none of these

17.	How many elements	of order 2 are there in	a group of order 4?	26. The order of ⊆ in
	1) 1	2) 2	3) 3	4) can't say
18.	Which of the followi	ng matrix is not diago	onalizable?	Att Lot K he a comm
	$1)\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$2)\begin{bmatrix}1 & 0\\3 & 2\end{bmatrix}$	$3)\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}$	$4)\begin{bmatrix}1 & 1\\1 & 2\end{bmatrix}$
19.	The least upper boun	d of any subset of the	set of rational numbers	s is always:
	1) a rational number	2) a real number	3) a positive number	4) an irrational number
20.	Value of $\lim_{n\to\infty}\frac{1}{n}$	$1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots +$	$n^{\frac{1}{n}}$] is equal to :	
	1) 0	· 2) e	3) 1	4) 1/e
21.	How many proper no	ormal subgroups are p	ossible for a group of o	rder 112?
	1) 0	2) 5	3) 10	4) 16
22.	Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ be a g	group and H be a sub	group of G generated by	y (0, 1). Then order of
	1) 1	2) 2	3) 3	4) 4
23.	Every group G is ison	morphic to a permutat	tion group; this stateme	nt is :
	1) Cayley's theorem	2) Lagrange's theo	rem 3) Liouville's the	orem 4) none of these
24.	Every group of prime	e order is:		
	1) a field	2) abelian	3) cyclic	4) none of these
25.	Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be def	fined as $T(x, y, z, t) =$	(x+y+5t, x+2y+t,	-z+2t, $5x+y+2z$).
	Then dimension of th	ne eigen space of T is	1 = (4 - A) 1 A 1 = 0	
	1) 1	2) 2	3) 3	4) 4

27.	Let R be a commutative ring with unity of characteristic 3. For $a, b \in \mathbb{R}$, $(a+b)^6$ is equal					
	to:					
	1) $a^6 + b^6$	2) $a^6 - a^3b^3 + b^6$	3) $a^6 + a^3b^3 + b^6$	4) none of these		
28.	$Let f(x) = x^2 + 1, g(x)$	$(x) = x^3 + x^2 + 1$ and $h(x)$	$(x) = x^4 + x^2 + 1$ then:	out to and state yes — 31		
	1) $f(x)$ and $g(x)$ are	irreducible over \mathbb{Z}_2	2) $g(x)$ and $h(x)$ a	re irreducible over Z2		
	3) $f(x)$ and $h(x)$ are	irreducible over Z ₂	4) $f(x)$, $g(x)$ and h	(x) are irreducible over \mathbb{Z}_2		
29.	Let F be a field of o	order 2 ⁿ . Then:				
	1) Char F = 0	2) Char F = a primo	e number 3) Char l	F = 2 4) none of these		
30.	If $\mathbb{Z}[i]$ is the ring of Gaussian integers, then the quotient $\mathbb{Z}[i]/\langle 3-i \rangle$ is isomorphic to:					
		2) Z/3Z	3) Z/4Z	4) Z/10Z		
	almo and Table (0) vd	tigners of G materials	tels is gill all other gurings			
31.	The ring $\mathbb{Z}[\sqrt{-11}]$ is	sa:		1000		
	1) Euclidean Domai	in	2) PID but not Eu	clidean Domain		
	3) UFD but not PII		4) not a UFD			
32.	The order of normal	lizer of $\sigma = (12)(34)$ in	1 S ₆ is :	a sid gang d atil 83 Angang Kanada (17		
	1) 8	2) 16	3) 24	4) 4		
33.	Let A be a square matrix of order <i>n</i> , then nullity of A is:					
	1) <i>n</i> – rank A	2) rank A – n		4) none of these		
34.	If $n(A) = 115 \ n(B)$	= 326, n(A - B) = 47,		(A) equal to :		
	1) 373	2) 165	3) 370	4) 394		
	.,,,,,,	2) 103	3)370	1) 321		
T2/6 Z	KF-26052-A	+ 6	+	Contd.		

3) 28

4) 29

26.

1) 2

The order of 2 in the field \mathbb{Z}_{29} is :

2) 14

- Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation given by $T(x_1, x_2, x_3) = (x_1 + x_2, x_1 x_3)$, then 35. dimension of null space of T is:
 - 1)0

2) 1

3)2

- 4) 3
- If $X = \{4^n 3n 1 : n \in \mathbb{N}\}\$ and $Y = \{9(n 1) : n \in \mathbb{N}\}\$ then $X \cup Y$ is equal to : 36.
 - 1) X

2) Y

3) N

- 4) none of these
- Which one of the following functions $f: \mathbb{R} \to \mathbb{R}$ is injective? .37.
 - 1) f(x) = |x|
- 2) $f(x) = x^2$
- 3) f(x) = 16
- 4) f(x) = -x
- Points (a+5, a-4), (a-2, a+3) and (a, a) are not collinear only when a is: 38.
 - 1)3

2) 4

- 3) any real number

- Matrix A = $\begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$ is: 39.
 - 1) involutory
- 2) nilpotent
- 3) idempotent
- 4) none of these
- The point where the line y = x + 1 is a tangent to the curve $y^2 = 4x$ is: 40.
 - 1) (2, 1)
- 2) (2, 2)
- 3) (1, 1)
- 4) (1, 2)

- If $f(x) = e^x$ then $f^{-1}(e)$ is equal to :. 41.
 - 1) 1

2) e

3)0

- 4) 1/e
- The unit normal vector to the level surface $x^2 + y z = 4$ at the point (-3, 1, 6) is: 42.
 - 1) (-6i+j-k)
- 2) $\frac{1}{\sqrt{38}}$ (-6 i+j-k) 3) $\frac{1}{\sqrt{38}}$ (-9 i+j-k) 4) none of these
- The function y = f(x) has a (relative) minimum where : 43.
 - 1) f(x) = 0 and f'(x) < 0

2) f'(x) = 0 and f''(x) < 0

3) f(x) = 0 and f'(x) > 0

4) f'(x) = 0 and f''(x) > 0

44.	Derivative of y^x with respect to x is:					
	1) y ^x	2) log <i>y</i>	$3) y^x \log y$	4) $x y^{x-1}$		
**		112		0 (1		
45.	$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{V})$ will be	equal to:				
	1) 0	2) $\vec{V} \cdot (\vec{V} \cdot \vec{V})$	3) $\nabla^2 \vec{V}$	4) none of these		
	and Leavening in	- 275	Y (0	- X(L		
46.	How many epimorp	phisms are possible f	from \mathbb{Z}_{12} to \mathbb{Z}_6 ?			
	1) 0	2) 6	3) 4 100 2000000	4) 2		
	THE WAR			a the state of		
47.	For any real numbe	$\mathbf{r} x$ the value of \lim_{n}	$\rightarrow \infty \frac{x^n}{n!}$ is equal to:			
	1) 1	2) 0	3) e	4) none of these		
		anusala yarez				
48.	Value of the $\lim_{n\to\infty}(n)^{\frac{1}{n}}$ is:					
	1) 1	2) e	3) 1/e	4) 0		
	dinament	tualon reson	Ži n/noturit	viorulioni.) (
49.	The sequence $\langle x_n \rangle$	$r = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	is:			
	1) convergent		2) monotonically de	ccreasing		
	3) not convergent	CT 1 2000	4) none of these	A DIO		
50.	The series $\sum \frac{\sqrt{n}}{n^2+1}$ is		s. (a laque-a ca)	(asil 5 = (a) 11		
	1) convergent	2) divergent	3) not convergent	4) none of these		
51.	The series $x - \frac{x^2}{2} + \frac{x}{2}$	$\frac{x^3}{3} - \frac{x^4}{4}$ is converge	ent for :	v lemman Ambadil		
	1) all real x	2) $ x < 1$	3) $ x \le 1$	4) $-1 < x \le 1$		
			idaina svidhelaid e sintra	Law political self.		
52.	The limit, $\lim_{x\to 0} [x]$	(x); where $[x]$ is the g	reatest integer less than o	or equal to x is:		
	1) positive	2) zero	3) not unique	4) negative		

53.	Let $\{x_n\}$ be a sequence of positive terms, such that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}$ exists, th	en:
	1) $\lim_{n\to\infty} (x_n)^{\frac{1}{n}}$ exists 2) $\lim_{n\to\infty} (x_n)^{\frac{1}{n}}$ may exist	

- 3) $\lim_{n\to\infty} (x_n)^{\frac{1}{n}}$ does not exist
- 4) none of these

54. The domain for the convergence of the series
$$1 + x + x^2 + x^3 + \dots$$
 is:

1) $[-1, 1]$ 2) $(-1, 1]$ 3) $(-1, 1)$ 4) none of these

- 55. The function $f(x) = -2x^3 9x^2 12x + 1$ is increasing in the interval: 1) $(-\infty, -2) \cup (-1, \infty)$ 2) (-2, 1) 3) (1, 2) 4) (-2, -1)
- 56. The function f(x) = |x + 2| is not differentiable at: 1) x = 2 2) x = -2 3) $x = \pm 2$ 4) x = 0
- 57. The value of $\lim_{x\to\infty} [\sqrt{x^2+1}-x]$ is: 1) ∞ 2) 1 3) 0 4) does not exist
- 58. If $f(x) = \sqrt{x^2 4}$ in [2, 4] satisfies the Lagrange's mean value theorem, then there exists some $c \in (2, 4)$. What is the value of that c?

 1) 12

 2) 6

 3) $\sqrt{2}$ 4) $\sqrt{6}$
- 59. Which of the following functions is not uniformly continuous in $[2, \infty]$?

 1) $\frac{1}{x}$ 2) e^x 3) $\frac{1}{x^2}$ 4) $\sin x$
- 60. Let X = (0, 1) ∪ (2, 3) and f be a continuous function on X such that the derivative f'(x) = 0 for all x. Then range of f has:
 1) uncountable number of points
 2) countably finite number of points
 3) at most 2 points
 4) at most 1 point

61.	The value of $\lim_{x\to a} \frac{\sin(a-x)}{a(a-x)}$ is:					
	1) a	2) sin <i>a</i>	3) 1/a	4) does not exist		
62.	If $f: [a, b] \to \mathbb{R}$ is s	trictly increasing, then	elv: inc s	ological project		
	1) f^{-1} does not exist		2) f^{-1} is strictly d	lecreasing		
	$3) f^{-1}$ is not monoton		4) f^{-1} exists on I			
63.	Let $f(x) = ax + b$ be a monotonic function on \mathbb{R} and satisfies condition $f(x) = f^{-1}(x)$, then values of a and b are :					
	1) $a=2$, $b=-1$	2) $a=-1$, $b\in\mathbb{R}$	3) $a=1, b\in\mathbb{R}$	4) $a = 1, b = -1$		
64.	The function $f(x) =$	$\frac{ x }{x}$; $x \neq 0$ may be made	le continuous at origin	n if:		
	1) f(0) = 0	(2) f(0) = -1				
	$3) f(0) = \infty$	4) cannot be made	continuous for any v	alue of f(0)		
65.	Range of the fur	$anction f(x) = x^2 + x$	-6 is:	e de la companya de l		
	1) [−6.25, ∞)	2) (−6.25, ∞)	3) (6.25, ∞)	4) (-∞, 6.25)		
66.	Which of the follow	ving series is absolute	ly convergent?	W 15 La Varios		
	$1) \sum \frac{(-1)^n}{n}$	2) $\sum \frac{1}{\sqrt{n}}$	$3) \sum_{n=1}^{\infty} \frac{1}{\log(n+1)}$	4) $\sum \frac{(-1)^n}{n^{3/2}}$		
67.	If $f: A \to B$, $g: B -$	→ C are two functions	such that $g \circ f: A \rightarrow 0$	C is onto then:		
				anta A) nana afthasa		

68. The value of k for which the function $f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0 is :

1) 0

2) 1

3) infinity

4) none of these

- 69. The set of points where $f(x) = |\sin x|$ is not differentiable is :
 - 1) empty
- 2) {0}
- 3) $\{k \cdot \pi/2 : k \in \mathbb{Z}\}$
- 4) $\{k \cdot \pi : k \in \mathbb{Z}\}$
- Area enclosed by the curve $r = 2a\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$ is: 70.
 - 1) πa^2
- 2) $2\pi a^2$
- 3) $\frac{\pi a^2}{2}$
- 4) none of these

- Integral $\int_0^\infty \frac{dx}{\sqrt{x} e^{\sqrt{x}}}$ is equal to : 71.
 - 1) 1

- 2)-2
- 3) 2

- 4) 2/e
- If $f(x) = \int_0^{x^2} \sqrt{\sin t + \cos t} dt$, then derivative of f(x) w.r.t. x is:
 - 1) $2x \sqrt{\sin x^2 + \cos x^2}$ 2) $\sqrt{\sin x^2 + \cos x^2}$ 3) $x \sqrt{\sin x^2 + \cos x^2}$ 4) none of these

- Let $I = \int_0^{\pi/6} \sin^2 t \cos^2 t \ dt$, then : 73.

 - 1) $I = \frac{\pi}{48}$ 2) $I < \frac{\pi}{48}$
- 3) $I > \frac{\pi}{48}$
- 4) none of these

- 74. The perimeter of the curve $r = 2\cos\theta$ is:
 - 1) $\pi/2$
- $2)\pi$

- 3) $3\pi/2$
- 4) 2π

- 75. Which of the following is correct?
 - 1) $\int_0^\infty e^{-x} dx$ is not convergent
 - $3)\int_{-\infty}^{0} e^{x} dx$ is convergent

- $2)\int_0^\infty e^{-x^2}dx$ is not convergent
- $4)\int_0^\infty e^{-x^2}dx$ is divergent
- Consider the function f defined on [-1, 1] as $f(x) = \begin{cases} k, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then: 76.
 - 1) f is not Riemann integrable

2) f is Riemann integrable

3) $\int_0^1 f(x) dx = 0$

4) $\int_0^1 f(x) dx = 3k$

- The integral $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ exists: 77.
- 1) when m > 0, n < 0 2) when m < 0, n < 0 3) when m > 0, n > 0 4) when m = n = 0
- Radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ is: 78.
 - 1) 1

2)2

3)3

- 4) none of these
- 79. Which one of the following series is uniformly convergent for all real x?
 - 1) $\sum \frac{\sin nx}{n}$
- 2) $\sum \frac{\sin nx}{n^2/3}$
- 3) $\sum \frac{\sin nx}{n^{1/4}}$
- 4) none of these

- If $f(x, y) = \begin{cases} xy \sin\left(\frac{1}{x}\right), x \neq 0 \\ 0, x = 0 \end{cases}$ then: 80.
 - $1)f_x(0,0) = 1 = f_y(0,0)$

 $2)f_{x}(0,0) = 0 = f_{y}(0,0)$

3) $f_x(0,0)\neq f_x(0,0)$

- 4) none of these
- If $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$, $(x, y) \neq 0$ and f(x, y) = 0 for (x, y) = (0, 0) then: 81.
 - 1) f(x, y) is discontinuous at (0, 0)
- 2) f(x, y) is continuous at (0, 0)

3) $f_x(0,0) = 1$

- 4) $f_y(0, 0) = 1$
- What is the positive value of m for which the coefficient of x^2 in $(1+x)^m$ is 6? 82.
 - 1)5

2)6

3) 7

- 83. Value of the integral $\int \tan x \, dx$ is:
 - 1) $\sec^2 x + c$
- $2) \cot x + c$
- $3) \log |\cos x| + c$
- 4) none of these
- If y = 3 when x = 3, and $\frac{dy}{dx} = \frac{2x}{y^2}$, then value of y at x = 1 will be: 84.
- 2) ³√12
- 3) ₹9
- 4) ³√3

85.	A bag has 8 red balls and 5 white balls.	Three balls are drawn at random.	Find the
	probability that the balls drawn are two	red and one white.	

$$1)\frac{C_2^8 \times C_1^5}{C_3^{13}}$$

2)
$$\frac{c_2^8 + c_1^5}{c_3^{13}}$$
 3) $\frac{c_3^8 \times c_3^5}{c_3^{13}}$

$$3)\frac{C_3^8 \times C_3^5}{C_3^{13}}$$

4) none of these

86. If slope of the tangent to a curve y = f(x) at any point (x, y) is given by the equation $\frac{dy}{dx} = (x-1)(x-2)^2(x-3)^3(x-4)^4$ then y will have a local maxima at :

1)
$$x = 1$$
 and 3

$$2) x = 1$$

3)
$$x = 2$$
 and 4

2)
$$x = 1$$
 3) $x = 2$ and 4 4) $x = 1, 2, 3$ and 4

Value of the integral $\int_C (xdx + xy dy)$ over a line C from (1, 0) to (0, 1) is: 87.

1)
$$\frac{1}{6}$$

2)
$$\frac{1}{2}$$

3)
$$-\frac{1}{6}$$
 4) $-\frac{3}{4}$

4)
$$-\frac{3}{4}$$

Value of the integral $\iint_C x^2 y^2$ over the domain $C = \{(x, y) : x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$ is: 88.

1)
$$\frac{\pi}{96}$$

2)
$$\frac{\pi}{24}$$

3)
$$\frac{\pi}{16}$$
 4) $\frac{\pi}{4}$

$$(4) \frac{\pi}{4}$$

If $f(x, y, z) = 3x^2y - y^3z^2$, then the grad f at (1, -2, -1) is: 89.

1)
$$-12\hat{\imath} - 9\hat{\jmath} - 16\hat{k}$$

2)
$$12\hat{i} - 9\hat{j} + 16\hat{k}$$

1)
$$-12\hat{\imath} - 9\hat{\jmath} - 16\hat{k}$$
 2) $12\hat{\imath} - 9\hat{\jmath} + 16\hat{k}$ 3) $12\hat{\imath} + 9\hat{\jmath} + 16\hat{k}$

4) none of these

The directional derivative of $f(x, y, z) = xy^2 + yz^3$ at point (2, -1, 1) in the direction of the 90. vector $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ is:

1)
$$\frac{13}{3}$$

2)
$$\frac{11}{3}$$

$$3)\frac{3}{11}$$

1) $\frac{13}{3}$ 2) $\frac{11}{3}$ 3) $\frac{3}{11}$ 4) none of these

91. Divergence of the 3-dimensional radial vector field \vec{r} is:

3)
$$3\hat{i} + \hat{j} + \hat{k}$$
 4) 1

The vector field $\vec{F} = x\hat{\imath} - y\hat{\jmath}$ is: 92.

- 1) divergence free but not irrotational
- 2) irrotational but not divergence free
- 3) divergence free and irrotational
- 4) neither divergence free nor irrotational

93.	Stoke's theorem	connects

- 1) line integral and surface integral
- 2) surface integral and volume integral
- 3) line integral and volume integral
- 4) none of these

94. Area of a triangle formed by the tips of the vectors
$$\vec{a}$$
, \vec{b} and \vec{c} is:

- 1) $\frac{1}{2}(\vec{a} \vec{b}) \cdot (\vec{a} \vec{c})$ 2) $\frac{1}{2}|(\vec{a} \vec{b}) \times (\vec{a} \vec{c})|$ 3) $\frac{1}{2}|(\vec{a} \times \vec{b} \times \vec{c})|$
- 4) none of these

95. An integrating factor of
$$x \frac{dy}{dx} + (3x + 1) y = xe^{-2x}$$
 is:

- (1) xe^{3x} 2) $3xe^x$
- 3) xe^x
- 4) $x^{3}e^{x}$

96. General solution of the differential equation
$$4x^2y'' - 8xy' + 9y = 0$$
 is:

- 1) $c_1 e^{5x/2} + c_2 e^{-3x/2}$ 2) $c_1 e^{3x/2} + c_2 e^{-3x/2}$ 3) $(c_1 + c_2 \log x) x^{3/2}$
- 4) none of these

97. Solution of the differential equation
$$y'' + 4y = 0$$
 subject to $y(0) = 1$, $y'(0) = 2$ is:

- 1) $\sin 2x + 1$
- 2) $\cos 2x + 2x$
- 3) $\cos 2x \sin 2x$
- 4) $\cos 2x + \sin 2x$

98. If
$$\phi(x, y) = 0$$
 is a singular solution, then $\phi(x, y)$ is a factor of:

1) p-discriminant only

- 2) c-discriminant only
- 3) both p and c-discriminants
- 4) none of these

99. For a complex number z, the minimum value of
$$|z| + |z - \cos \alpha - i \sin \alpha|$$
 is :

1)2

4) 3

100. Let z be a complex number such that
$$|z| = 4$$
 and $arg(z) = \frac{5\pi}{6}$, then z is:

- 1) $-\sqrt{3}+i$ 2) $2\sqrt{3}+2i$ 3) $2\sqrt{3}-2i$ 4) $-2\sqrt{3}+2i$

Key for TGT, Paper-II: Mathematics (21.2.2015(Evening) T-2/6 'A' Series							
Q.No.	Ans.	Q.No.	Ans.	Q.No.	Ans.	Q.No.	Ans.
1	1	26	3	51	4	76	2
2	4	27	11	52	3	77	3
3	3	28	2	53	1	78	1
4	4	29	3	54	3	79	1
5	3	30	4	55	4	80	2
6	2	31	2	56	2	81	2
7	2	32	2	57	3	82	4
8	4	33	1	58	4	83	3
9	3	34	1	59	2	84	4
10	2	35	2	60	3	85	1
11	1	36	2	61	3	86	2
12	4	37	4	62	4	87	3
13	1	38	3	63	2	88	1
14	1	39	3	64	4	89	1
15	2	40	4	65	1	90	4
16	2	41	1	66	4	91	2
17	4	42	2	67	1	92	3
18	1	43	4	68	2	93	1
19	2	44	3	69	4	94	2
20	3	45	ı	70	3	95	1
21	1	46	4	71	3	96	3
22	4	47	2	72	1	97	4
23	1	48	, 1	73	2	98	3
24	3	49	3	74	4	99	2
25	4	50	1	75	3	100	4

