23104

A 120 MINUTES

1.	Which of the following is a weak Lewis acid?										
	A)	HCl	B)	H_2O		C)	CH_4	D)	B(OH) ₃		
2.	Identi	fy the wrong s	stateme	nt amo	ng the	follow	ing.				
	A)	Manganese (II) is a weaker reducing agent than chromium(II)									
	B)	Oxygen is superior to fluorine in stabilizing higher oxidation states of transition metals									
	\mathbf{C}	$\Omega_{XO-anions}$	ais. St vana	dium a	re unst	ahle					
	C) D)	Copper(I) un	dergoe	s dispro	oportio	nation	in aqueous	medium.			
3.	List I boran List I	contains the fees. Match List	ormula I with List II	e of soi List II	ne bor	anes ar	ıd list II coı	ntains the	classes of		
	a. $B_6 B_6$	H_{6}^{2-}	1. arac	chno							
	b. $B_5 P_5$	H_9	2. close	50							
	c. $B_4 B_4$	H_{10}	3. nide	C							
	A)	a-2, b-3, c-1			B)	a-2, b	-1, c-3				
	C)	a-3, b-1, c-2			D)	a-3, b	-2, c-1				
4.	The spin only magnetic moments of the species:										
	1.	$[Cr(NH_3)_6]^3$	2+		2.		$[N)_{6}]^{3}$				
	3. are in	$[Mn(H_2O)_6]$ the order :			4.	[Co(N	$[H_3)_6]^{-1}$				
	A)	1 > 2 > 3 > 4			B)	2 > 3	> 4 > 1				
	C)	3 > 1 > 2 > 4			D)	3 > 2	>4>1				
5.	Consi [(<i>CO</i>) This i	der the reaction ${}_{5}MnCH_{3}$] + CO s an example of	on, $P \rightarrow [(Co)]$ of:	0) ₅ Mn -	-COCH	<i>H</i> ₃]					
	A)	migratory in	sertion		B)	oxida	tive additio	n			
	C)	electrophilic	additio	n	D)	nucle	ophilic add	ition			
6.	Which of the following metal carbonyls contain both terminal and bridging carbonyl groups?							ridging			
	1. Os ₂	2(CO) ₉	2. Fe ₃	(CO) ₁₂		3. Ir ₄ (CO) ₁₂	4. Co	4(CO) ₁₂		
	A)	1, 2 & 3 only	7		B)	1,28	z 4 only				
	C)	2, 3 & 4 only	1		D)	1,38	z 4 only				

- 7. Each of the following pairs contain a metal ion and the reagent used for the quantitative precipitation of the metal ion. Identify the wrongly matched pair.
 - A) Nickel: Dimethyl glyoxime
 - B) Zinc: 8-hydroxy quinoline
 - C) Calcium: Ammonium oxalate
 - D) Copper: Ammonium molybdate
- 8. Oxidative addition of the square planar complex [IrCl(PPh₃)₃] gives two products. They are:
 - A) cis and trans- isomers B) fac and mer- isomers
 - C) enantiomers D) linkage isomers.
- 9. List I contains some organometallics and List II contains some processes associated with them. Match List I with List II List I

LISUI					
a. [(PPh ₃) ₃ RhCl]	1. Monsanto process				
b. $[Rh(CO)_2I_2]^-$	2. Hydrogenation				
c. $[PdCl_4]^{2-}$	3. Hydroformylation				
d. $[HCo(CO)_4]$	4. Wacker process				
A) a-1, b-2, c-4, d-3	B) a-3, b-4, c-2, d-1				

- C) a-4, b-3, c-1, d-2 D) a-2, b-1, c-4, d-3
- 10. The metal ion present in the enzyme carboxy peptidase-A: A) Fe^{2+} B) Mo^{3+} C) Zn^{2+} D) Mg^{2+}
- 11. Identify the **wrong** statements about hemocyanin found in many species in the Arthropoda and Mollusca
 - 1. It is a Cu(I)/Cu(II) system
 - 2. Copper is in the +1 state in the oxy-form
 - 3. Each copper atom is bound by three histidine ligands
 - 4. It contains neither heme nor cyanide ion
 - A) 1, 2& 3 only B) 1, 3& 4 only C) 2, 3& 4 only D) 1, 2& 4 only
- 12. Oxygen binding curve plotted between percentage of saturation and partial pressure of oxygen for haemoglobin is:
 - A) sigmoidal B) linear C) parabolic D) hyperbolic
- 13. Which of the following properties is measured in derivative thermogravimetric analysis?
 - A) Change in weight B) Change in temperature
 - C) Rate of change of weight D) Change in enthalpy

14.	 In neutron activation analysis, the atom A) decay characteristics of daughter B) velocity of neutron C) threshold energy of reaction D) nuclear recoil 	is identified by: element	
15.	The separation of lanthanides using ionA) oxidation state of the ion B)C) solubility of their nitrates D)	exchange method is solubility of their c size of the hydrated	based on: hlorides l ion
16.	Which of the following metal ions are iimpulses in living systems?1. K^+ 2. Fe^{2+} 3. M	nvolved in transmissi g ²⁺ 4. Na	on of nerve
	A) 1 & 2 only B) 2 & 3 only	C) 3 & 4 only	D) 1 & 4 only
17.	The gas commonly used in ICP-AES:A) argonB)C) nitric oxideD)	hydrogen carbon dioxide	
18.	 Which of the following is wrongly mat A) Atomic absorption spectroscopy B) Conductometric titration C) Turbidimetry D) HPLC 	ched? : Hollow cathode la : Redox reaction : Air pollution : Petroleum industr	amp 'Y
19.	In four different measurements, the mat 5.7 g, 5.4 g,5.3 g and 5.6 g. The mean of A) 0.05 B) 0.10	ss of a particular obje leviation is: C) 0.15	ct is found to be D) 0.20
20.	The number of NaCl units in its unit ce sodium ion in the crystal are respective A) 4,4 B) 4,6	ll and the coordinatio y : C) 6, 4	n number of D) 6, 6
21.	 Barbituric acid is prepared by the conder A) Urea with diethyl malonate B) Urea with Diethyl succinate C) Hydrazine and diethyl malonate D) Guanidine and thiourea 	ensation of:	
22.	The equation, $\left[\frac{\partial(\Delta G/T)}{\partial T}\right]_{P} = -\frac{\Delta H}{T^{2}}$ is k A) Maxwell relation B) C) Gibbs-Helmholtz equation D)	nown as: Joule-Thomson equ Duhem-Margules e	uation equation

- 23. Which of the following are assumptions of Debye theory of heat capacity of solids?
 - 1. A solid is an aggregate of atomic oscillators each of which is vibrating with a common mean frequency
 - 2. A solid is an elastic body and the vibrations of the whole should be considered
 - 3. The $3N_0$ modes of vibration of one mole of a monatomic solid are distributed among a spectrum of frequencies.
 - A) 1 & 2 only B) 1 & 3 only C) 2 & 3 only D) 1, 2 & 3
- 24. A particular reaction completes its 50% in 30 minutes and 75% in 90 minutes. The order of the reaction is:
 - A) zero B) 1 C) 2 D) 3
- 25. List I contains certain properties of gases and List II contains their expressions. Match List I with List II. [N: number of molecules per cubic metre, c: average velocity, k: Boltzmann constant, λ :mean free path, σ : molecular diameter, m: mass of a molecule.

a. Mean free path	1. $\frac{1}{3}c\lambda$
b. Coefficient of thermal conductivity	2. $\frac{1}{3}Nmc\lambda$
c. Coefficient of viscosity	3. $\frac{1}{2}Nck\lambda$
d. Coefficient of diffusion	$4. \frac{1}{\sqrt{2}\pi\sigma^2 N}$

A)	a-4, b-3, c-2, d-1	B)	a-3, b-4, c-1, d-2
C)	a-3, b-4, c-2, d-1	D)	a-4, b-3, c-1, d-2

- 26. Equal quantity of electricity is passed for same length of time through solutions of $FeCl_3$ and $ZnSO_4$. The ratio of the number of moles of iron, zinc and chlorine liberated at the electrodes is: A) 2:3:6 B) 1:2:3 C) 3:2:1 D) 6:3:2
- 27. The EMF of the cell, Pb|PbSO₄(s), SrSO₄(s), SrCl₂(aq)|Pt depends on the concentration of:
 A) Pb²⁺
 B) PbSO₄
 C) Sr²⁺
 D) All of these

29.	Which of the following statements are correct?1. A very minute quantity of a catalyst is sufficient in a reaction.2. A catalyst does not affect the standard free energy change of the reaction3. A catalyst cannot initiate a reaction							
	A)	1 & 2 only	B)	1 & 3 only	C)	2 & 3 only	D)	1,2&3
30.	The a A)	ccumulation o thixotropy	of the so B)	olvent on the s syneresis	surface C)	of a gel is kno imbibition	own as: D)	precipitation
31.	If the minim	ground state e num energy of	energy of the mo	of a particle in ost degenerate	n a 3-di e level o	mensional box of the system i	x is 15 s:	eV, the
	A)	70 eV	B)	45 eV	C)	90 eV	D)	350 eV
32.	The k radiat energ	inetic energy ion of waveler y of the metal	of a pho ngth 4.0 is: (tak	5000000000000000000000000000000000000	nitted f used is ²⁵ J m)	rom a metal si 2.5x10 ⁻¹⁹ J. 7	urface v The thre	when a eshold
	A)	1.5 x10 ⁻¹⁹ J	B)	2.5x10 ⁻¹⁹ J	C)	2.0x10 ⁻¹⁹ J	D)	3.0x10 ⁻¹⁹ J
33.	The g A)	round state ter ${}^{2}P_{3}$	rm sym B)	bol for oxyge ${}^{3}P_{2}$	n atom C)	is: ³ P ₃	D)	${}^{3}P_{4}$
34.	The w	vave function	of an oi	rbital is $\Psi = A$	$\frac{r^2}{a_0^2}e^{-r/2}$	$\int_{a_0}^{a_0}\sin\theta\cos\theta\cos\theta$ co	sø. Th	e orbital is:
	A)	$3d_{xy}$	B)	$3d_{yz}$	C)	$3d_{xz}$	D)	$3d_{x^2-y^2}$
35.	IF Ψ_1 spin v the gr	and Ψ_2 are the vave functions ound state wa	e wave s and S ve func	functions of t is the overlap tion of H_2 mo	wo hyc integra olecule	lrogen atoms, al, according t is:	α and o the V	β are the B theory,

A) $\frac{1}{\sqrt{2(1+S)^2}} (\Psi_1 + \Psi_2) [\frac{1}{\sqrt{2}} \{\alpha(1)\beta(2) - \alpha(2)\beta(1)\}]$

B)
$$\frac{1}{\sqrt{2(1-S)^2}} (\Psi_1 - \Psi_2) [\frac{1}{\sqrt{2}} \{\alpha(1)\beta(2) + \alpha(2)\beta(1)\}]$$

C)
$$\frac{1}{\sqrt{2(1+S)^2}} (\Psi_1 + \Psi_2) [\frac{1}{\sqrt{2}} \{\alpha(1)\beta(2) + \alpha(2)\beta(1)\}]$$

D) $\frac{1}{\sqrt{2(1-S)^2}} (\Psi_1 - \Psi_2) [\frac{1}{\sqrt{2}} \{\alpha(1)\beta(2) - \alpha(2)\beta(1)\}]$

According to the variation method, the energy of a helium atom is given as 36. $E = Z^2 - \frac{27}{8}Z$. The minimum energy of helium atom is: A) $-\left(\frac{27}{8}\right)^2$ B) $-\left(\frac{27}{16}\right)^2$ C) $-\left(\frac{27}{8}\right)\left(\frac{27}{16}\right)$ D) $-\left(\frac{27}{16}\right)\left(\frac{27}{32}\right)$ According to the MO theory, the bond orders of NO, NO⁺ and NO⁻ are 37. respectively: C) 2.5.3.2 2, 2.5, 3 2.3.2.5 D) 2.5.2.3 A) B) 38. List I contains some species and List II contains the type of interactive force in them. Match List I with List II List I List II a. H_3O^+ 1. ion-induced dipole b. H_2F_2 2. ion-dipole 3. dipole-induced dipole c. I_3 d. $Ar(H_2O)_n$ 4. dipole-dipole A) a-2, b-1, c-3, d-4 B) a-2, b-4, c-1, d-3 D) a-3, b-1, c-2, d-4 a-4, b-2, c-1, d-3 C) In the C_{3V} point group, the product $C_3\sigma_v$ generates (C₃ is in the counter 39. clockwise direction): C) C_{2}^{2} A) σ B) σ D) Ε 40. List I contains a few molecules and List II contains their point groups. Match List I with List II List I List II a. BF₃ 1. C_{3V} b. NH_3 2. D_{3d} c. C_2H_6 (staggered) 3. D_{3h} d. Allene 4. D_{2d} A) a-2, b-1, c-4, d-3 B) a-4, b-1, c-2, d-3 a-2, b-4, c-1, d-3 a-3, b-1, c-2, d-4 D) C) 41. Identify the **incorrect** statement among the following. A) The product of two elements of a group is always an element of the same group The number of IR's in a group is equal to the number of classes of B) elements in the group The inverse of an element A_n^m is always A_n^{n-m} C) A molecule having no S_n will be optically active. D)

42. Part of the character table of the C_{3V} point group is given below along with a reducible representation, Γ .

C _{3V}	E	2C ₃	$3\sigma_{\rm m}$	
			v	
A_1	1	1	1	
A_2	1	1	-1	
Ε	2	-1	0	
Γ	7	1	-1	

ī.

The total representation reduces as:

A) $\Gamma = 2A_1 + A_2 + 2E$ C) $\Gamma = A_1 + 2A_2 + 2E$ B) $\Gamma = 2A_1 + 3A_2 + E$ D) $\Gamma = A_1 + 3E$

43. Some functional groups and their associated group frequencies are given below. Identify the **wrongly** matched pair:

A)	$-OH: 3600 \text{ cm}^{-1}$	B)	$>C=O: 1700 \text{ cm}^{-1}$
	1		1

- C) $-CH_3: 2970 \text{ cm}^{-1}$ D) $>C=S: 1800 \text{ cm}^{-1}$
- 44. When (S)-2-Methylcyclohexanone is treated with NaBH₄, the final product is:
 - A) (1S, 2S)-2-methyl cyclohexanol
 - B) (1S, 2R)-2-methyl cyclohexanol
 - C) (1R, 2S)-2-metyl cyclohexanol
 - D) (1R, 2R)-2-methyl cyclohexanol
- 45. The reaction,

 $RCH = CH - CH_2OSOCl \xrightarrow{heat} RCHCl - CH = CH_2 + SO_2$ is mechanistically:

- A) SN^1 reaction B) SN^i reaction with allylic rearrangement
- C) SN² reaction D) a cheletropic reaction
- 46. Which of the following fails to give Cannizzaro reaction?
 - A) Di-O-substituted benzaldehyde
 - B) Benzaldehyde
 - C) β -Hydroxy butyraldehyde
 - D) Glyoxalic acid
- 47. Tutocaine, a local anaesthetic can be synthesized by:
 - A) Michael reaction B) Malaprade reaction
 - C) Diels Alder reaction D) Mannich reaction
- 48. One can avoid the hazards in dealing with toxic CH₂N₂ during cyclopropanation reaction by using:
 A) Cu, CH₂I₂ B) Mg, CH₂I₂ C) Zn, CH₂I₂ D) Cd, CH₂I₂

49. Identify, from the following, the best reagent for the conversion:

D) Progesterone does not give haloform reaction.

56. Identify the product in the following reaction.

- 57. 1. Synthons are idealized fragments resulting from a disconnection2. Umpolung refers to the removal of normal polarity of a functional group.
 - A) Both 1 and 2 are true and 2 is the correct explanation of 1
 - B) Both 1 and 2 are true, but 2 is not the correct explanation of 1
 - C) 1 is true, but 2 is false
 - D) 1 is false, but 2 is true.
- 58. Pick up the new environment friendly oxidant that has been suggested to effect the oxidation,Cyclohexanol _____ cyclohexanone
 - A) Ag_2O B) $KMnO_4/H^+$ C)PCCD) $NaOCl/CH_3COOH$

59.	Match List I with list II				
	List I	List II			
	a. Phthaloyl peroxide	1. Free radical			
	b. Tetrazole	2. Benzyne			
	c. Benzoyl peroxide	3.Carbene			
	d. Allyl halide	4. Carbocation			
	A) a-1, b-2, c-3, d-4	B) a-2, b-3, c-4, d-1			
	C) a-1, b-2, c-4, d-3	D) a-2, b-3, c-1, d-4			

60. Which of the following carbonyl compounds form aromatic carbocation on protonation?

61. Which of the following is the correct structure of paracetamol?

68. Which carbon becomes the anomeric carbon of glucose in its pyranose form?

- 69. Which is complementary to the DNA segment 5'-ACGTAATC-3'? A) 3'-TGCATTCG-5', B) 3'-TGCATTAG-5',
 - C) 5'-TGCATAAG-3' D) 5'-TGCATTAG-3'
- 70. Which compound has a lower pKa value?
 - A) Fluoroacetic acid B) Chloroacetic acid
 - C) Bromoacetic acid D) Iodoacetic acid
- 71. Which substituted aniline is least basic?

72. What is E-Z nomenclature of the following?

ЮH

- 78. How many signals does the aldehyde $(CH_3)_3CCH_2CHO$ have in ¹H NMR and ¹³C NMR spectra?
 - A) Five ¹H signals and six ¹³C signals
 - B) Three ¹H signals and four 13 C signals
 - C) Five ¹H signals and four 13 C signals
 - D) Three ¹H signals and six ¹³C signals
- 79. A pressure vessel contains a gaseous mixture made up of 88 kg carbon dioxide and 56 kg nitrogen. Determine the mole fraction of carbon dioxide.
 A) 0.05 B) 0.5 C) 0.25 D) 0.75
- 80. Which of the following would be correct units for the rate constant of a reaction that is second order overall?
 A) s⁻¹ B) mol⁻¹ dm³ s⁻¹ C) mol cm⁻³ s⁻¹ D) mol⁻² dm⁶ s⁻¹
- 81. The time for half change of the acid catalysed hydrolysis of sucrose, which is first order overall, is 3.466 h at 25 °C. What is the rate constant for the reaction at this temperature?
 A) 0.2 hour⁻¹ B) 6.932 hour⁻¹ C) 0.3 hour⁻¹ D) 2 hour⁻¹
- 82. How many normal modes of vibrational are possible for a benzene molecule? A) 6 B) 30 C) 12 D) 36
- 83. In which of the following ways, absorption is related to transmittance?
 - A) Absorption is the logarithm of transmittance
 - B) Absorption is the reciprocal of transmittance
 - C) Absorption is the negative logarithm of transmittance
 - D) Absorption is a multiple of transmittance
- 84. In Beer-Lambert Law $A = \varepsilon bC$, A is absorbance, b is length of light path and C is concentration. Which of the following is represented by ε in the equation?
 - A) Transmittance B) Molar absorptivity
 - C) Specific rotation D) Absorption frequency
- 85. Which of the following is Nessler's reagent (used for detection of ammonia)?
 - A) Potassium tetraiodomercurate(II)
 - B) Potassium tetracyanonickelate (II)
 - C) Potassium hexacyanoferrate (II)
 - D) Potassium tetraiodomercurate (III)
- 86. How many types of hybridisation are possible for complexes with a coordination number of 4?
 - A) 1 B) 2 C) 3 D) 4

87.	The products obtained at anode and cathode during electrolysis of aqueous NaCl are respectively.								
	A)	Na and Cl_2	B)	Cl ₂ an	d Na	C)	H_2 and Cl_2	D)	Cl_2 and H_2
88.	The s	ubstance whic	h cause	ed Bhop	pal trag	gedy:			
	A)	Methyl cyan	ide		B)	Methy	yl isocyanide		
	C)	Methyl isocy	anate		D)	Meth	yl cyanate		
89.	Identi	fy a biodegrad	lable p	olymer	from t	he follo	owing.		
	A)	Polyurethane	e		B)	polyla	actic acid		
	C)	nyion-6			D)	PVC			
90. Which of the following statement is not true about ozone?									
	A)	Both O-O bo	ond dist	tances a	ire equ	al			
	B) C)	Uzone is ben Hybridisation	t(v)s	naped ntral ox	voen a	tom is	sn ³		
	D)	Bond angle i	s 116.8	8 ⁰	iygen a		55		
91		is not a greenl	house a	795					
<i>)</i> 1.	A)	CO_2	B)	CH ₄		C)	N_2	D)	SO_2
	-		1	、 ·					
92.	The u	nit of COD an	ID BOL	J_{1S} :		\mathbf{C}	moll ⁻¹	D)	molKa ⁻¹
	A)	IIIgL	В)	mgL		C)	IIIOIL	D)	monkg
93.	Whick	h of the follow	ving is	a top-de	own pr	ocess?			
	A)	High energy ball milling B				Sol-Gel method			
	C)	Hydrotherma	ai syntr	lesis	D)	Cnem	iicai vapour de	epositio	n
94.		is a green sol	vent.						
	A)	Acetonitrile	1.00		B)	Acetio	c acid		
	C)	Super critica	$1 CO_2$		D)	DIOX	ine		
95.	Calcu	late the percer	ntage a	tom eco	onomy	for the	fermentation	of gluc	cose
	produ	cing ethanol a	and car	bon dio	xide				
	$C_6 \Pi_{12}$	$2O_6 \rightarrow 2C_2\Pi_5C$	JΠ +2	CO_2					
	A)	100 %	B)	51.1%)	C)	25.5%	D)	53.3%
96.	Whicl	h of the follow	ving is	sulphar	nethox	azole?			
	A)		s H	NH ₂	B)		0,0	N-0 1	
			% ∥ О №Н				N H	\sim	
		H ₂ N ²	NO S-	7		Н	2N0		
	C)		K _n ,	Ň	D))	H ₂ N-	0 _N	\
		H ₂ N	Н				Ϋ́ H	N—⟨ N—′	
		-							

- 97. The electroanalytical technique that involves the measurement of electricity consumed in a redox reaction of the analyte is:
 - A) Potentiometry B) Con

Conductometry

- C) Polarography D) Coulometry
- 98. Which among the following on which Half wave potential of polarograph depends?
 - A) Concentration of electro active species
 - B) Natutre of supporting electrolyte
 - C) Dissolved oxygen
 - D) Nature of electro active species
- 99. Calculate λ max of the compound given below:

A) 273 nm B) 303 nm C) 313 nm D) 343 nm

- 100. Which is the correct order of increasing wave number of the stretching vibrations of (1) C-H (alkane), (2) O-H (alcohol), (3) C=O (ketone), and (4) C≡C (alkyne)?
 - A)(4) < (3) < (2) < (1)B)(3) < (4) < (2) < (1)C)(3) < (4) < (1) < (2)D)(4) < (3) < (1) < (2)
- 101. Identify the compound from the following spectral data Molecular formula $-C_7H_7Br$, EI Mass spectral data- m/z (%)- 172 (12%), 170 (12%), 91 (100%), 65(15%). ¹ H NMR δ ppm (CDCl₃)- 7.1- 7.5 (5 H, multiplet), 4.4 (2H, singlet), ¹³C NMR δ ppm (CDCl₃) -137-128 (3 peaks), 33 (1 peak)
 - A) P-bromotolune B) Benzyl bromide
 - C) m-bromotolune D) 3- Bromoheptane
- 102. Discrete lines in the emission spectrum of hydrogen atoms suggest that:
 - A) Electrons can occupy only certain, discrete energy levels in the atom.
 - B) Electrons occupy continuous energy levels (i.e., any levels) in the atom.
 - C) Emission spectral lines do not tell us anything about the energy levels of the electrons in atoms.
 - D) Emission spectrum is not discrete but continuous
- 103 Which of the following coordination complex is paramagnetic? A) $[Ni (CN)_4]^{2^-}$ B) $[Ni(CO)_4]$ C) $[NiCl_4]^{2^-}$ D) $[Co(NH3)_4]^{3^+}$

104. What is IUPAC name of the following?

- A) 1,1,3,3,Tetramethyl- 2, 4 dichlorobicyclo[1,1,0] butane
- B) 1,3-Dichloro-2,2,4,4-Tetramethyl bicyclo[1,1,0] butane
- C) 1,3-Dichloro-2,2,4,4-Tetramethyl bicyclo[1,1] butane
- D) 1,3-Dichloro-2,2,4,4-Tetramethyl bicyclo[1,1,0] propane
- 105. Which of the following statement is true for CF_4 , XeF_4 and SF_4 ?
 - A) All are tetrahedral
 - B) CF_4 is square planar, XeF₄ is T shaped and SF₄ is tetrahedral
 - C) CF_4 is tetrahedral, XeF₄ square planar and SF₄ is see-saw
 - D) CF₄ is square planar, XeF₄ square planar and SF₄ pyramidal
- 106. The point group of PCl₅ is: A) D_{3v} B) D_{3h} C) C_{3v} D) C_{3h}
- 107. The thermal stability of hydrides of group 14 are in the order
 - A) $CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$
 - $B) \qquad CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$
 - C) $CH_4 > SiH_4 = GeH_4 > SnH_4 > PbH_4$
 - D) $SiH_4 > CH_4 > GeH_4 > SnH_4 > PbH_4$
- 108. The ratio of lone pair and bond pair electrons on central atom in I_3^- and XeF₄ are respectively A) 1.5, 0.5 B) 0.5, 1.5 C) 2, 0.5 D) 0.5,2
- 109. The product obtained when p-nitrotoluene is nitrated with concentrated nitric acid and sulphuric acid
 - A) 1-Methyl-2,4-dinitrotoluene
 - B) 1-Methyl-3,4- dinitro toluene
 - C) 1-methyl-3,4,5-trinitrotoluene
 - D) 1-methyl-3,5-dinitrotoluene
- 110. Which of the following is a mono basic acid? A) H_3BO_3 B) H_2SO_4 C) H_3PO_4 D) $H_2C_2O_4$
- 111. Which among the following is the strongest Bronstead Base? A) ClO^{-} B) ClO_{2}^{-} C) ClO_{3}^{-} D) ClO_{4}^{-}

112. Among the following ions, which one has highest magnetic moment?

A)	$[Co(NH_3)_6]^{3+}$	B)	$[Ni (CN)_4]^{2-}$
C)	$[CoF_6]^{3-1}$	D)	Ni(CO) ₄

- 113. The compound 1E,5E- hexadiene reacts with excess of bromine in CCl₄. How many stereoisomeric tetrabromides will be formed?
 A) 2 B) 3 C) 4 D) 5
- 114. The major product of mono bromination of phenyl benzoate with bromine and aluminium bromide is:

- 115. The reagent used for coupling amino acids in the solid phase peptide synthesis (SPPS) is:
 - A) 1,4-Dicyclohexylcarbodiimide
 - B) 1,3-Dicyclohexylcarbodiimide
 - C) 2,3-Dicyclohexylcarbodiimide
 - D) 1,2-Dicyclohexylcarbodiimide
- 116. Which is the main product of the following reaction?

117. The standard reduction potentials at 298K of the electrodes Li+/Li, Ba²⁺/Ba, Na⁺/Na and Mg²⁺/Mg are - 3.05, -2.73, -2.71 and -2.37 V respectively. The strongest oxidizing agent among the following is:
A) Li⁺ B) Ba²⁺ C) Na⁺ D) Mg²⁺

 118. Which list below gives only NMR active nuclei?

 A)
 1 H, 12 C, 19 F
 B)
 1 H, 2 H, 12 C

 C)
 2 H, 12 C, 19 F
 D)
 1 H, 13 C, 19 F

119. Which of the compound show only one singlet signal in the PMR spectra?

- A) neopentane B) 2-butyne
- C) Methoxy methane D) All of these
- 120. A compound with molecular formula $C_8H_{10}O$ that produced the ¹H NMR spectra shown below. The IR spectra does not show a broad absorbance at 3300 cm⁻¹ or a strong absorbance at 1710 cm⁻¹. Which of the following is the compound?

