MAT12

SUBJECT : MATHEMATICS

Candidate's Roll No.
\square

Time Allowed : 3 Hours

QUESTION PAPER SPECIFIC INSTRUCTIONS

(Please read each of the following instructions carefully before attempting questions) 1Ω

1 There are eighteen (18) questions in all.

2 Candidate has to attempt any fifteen (15) questions in all.

3 Marks assigned to each question/part are given against it.

4 Word limit in questions, wherever specified should be adhered to.

5 Attempts of questions shall be counted sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the answer booklet must be clearly struck off.

6 No extra/additional sheet will be provided.
7 Answer must be written in the authorized medium. No marks will be given for answers written in a medium other than the authorized one.

1 Prove or disprove that if $a+b=c+d$ and $a^{2}+b^{2}=c^{2}+d^{2}$, then $a^{n}+b^{n}=c^{n}+d^{n}$ for $n \in \mathbb{N}$.

2 If z_{1} and z_{2} both satisfy the relation $z+\bar{z}=2|z-1|$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}$, then find the imaginary part of $z_{1}+z_{2}$?

3 (i) A box contains 7 blue socks and 5 red socks. Find the number $2 \frac{1}{2}+2 \frac{1}{2}=\mathbf{5}$ n of ways two socks can be drawn from the box if
(a) they can be of any color
(b) they must be of the same color.
(ii) Consider the function $f: \mathbb{N} \times \mathbb{N}$ such that $f(x, y)=(2 x+1) 2^{y}-1$, where \mathbb{N} is set of natural numbers including zero. Check whether function is bijective or not.

4 (i) Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}\right)^{10}$.
(ii) If x, y, z are positive real numbers, such that $x+y+z=a$, then prove that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{a}$

5 Let A and B be square matrices. If $A B=B A$, then prove by the method of mathematical induction that $(A B)^{n}=A^{n} B^{n}$ for $n \geq 1$.

6 The value of $x y z$ is 55 or $343 / 55$ according as the series a, x, y, z, b is in A.P. or H.P., respectively. Find the values of a and b given that they are positive integers.

7 Is the following system consistent? If consistent, check whether the solution is unique or infinite.

$$
2 y+z=3,3 x+y+4 z=5,2 x+4 y+6 z=9
$$

8 Find the circle whose diameter is the common chord of the circles
$x^{2}+y^{2}+2 x+3 y+1=0$ and $x^{2}+y^{2}+4 x+3 y+2=0$.

9 Find the value of the determinant $\left|\begin{array}{ccc}b c & a b & a b \\ p & r & r \\ 1 & 1 & 1\end{array}\right|$, where a, b and c,
respectively, are the $p^{t h}, q^{t h}$, and $r^{t h}$ terms of a harmonic progression.

10 Solve the differential equation; $\frac{d y}{d x}-\frac{3}{x} y=x^{4} y^{\frac{1}{3}}$.

11 Check whether the points $-6 \vec{i}+3 \vec{j}+2 \vec{k},-13 \vec{i}+17 \vec{j}-\vec{k}, 3 \vec{i}-2 \vec{j}+4 \vec{k}$,
$5 \vec{i}+7 \vec{j}+3 \vec{k}$ are coplanar or not.

12 The mean and variance of a Binomial yariable X are 2 and 1, respectively. Find the probability that X takes values greater than 1 .

13 (i) Find all the eigen values and eigen vectors of the following matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(ii) Prove that the intersection of two subspaces W_{1} and W_{2} of a vector space $V(F)$ is also a subspace.

14 Find the values of A and B, if $f(x)=\frac{\sin 2 x+A \sin x+B \cos x}{x^{3}}$ is continuous at $x=0$.

15 If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$, then prove that $x^{2}+y^{2}+z^{2}+2 x y z=1$.

16 Find a matrix P such that $P^{-1} A P$ is a diagonal matrix where $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right] .10$

17 If each pair of the three equations $x^{2}+a x+b=0, x^{2}+c x+d=0$, and $x^{2}+e x+f=0$ has exactly one root in common, then show that $(a+c+e)^{2}=4(a c+c e+e a-b-d-f)$

18 Find the Laplace Transform of following:
(i) $t e^{-k t} \sin t$
(ii) $t^{3} e^{-3 t}$

