PHY15

SUBJECT : PHYSICS

Candidate's Roll No.
\square

Time Allowed : 3 Hours

QUESTION PAPER SPECIFIC INSTRUCTIONS

(Please read each of the following instructions carefully before attempting questions)

1 There are eighteen (18) questions in all.
2 Candidate has to attempt any fifteen (15) questions in all.
3 Marks assigned to each question/part are given against it.
4 Word limit in questions, wherever specified should be adhered to.
5 Attempts of questions shall be counted sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the answer booklet must be clearly struck off.

6 No extra/additional sheet will be provided.

7 Answer must be written in the authorized medium. No marks will be given for answers written in a medium other than the authorized one.

1 Derive an expression for the period of a compound pendulum.
Hence deduce the period of a simple pendulum from it.

2 Determine the operating point $\left(\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}\right), \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{s}}, \mathrm{V}_{\mathrm{G}}$ and V_{D} for the following FET circuit.

3 Prove that fall in temperature of the gas during the adiabatic expansion
from P_{1} to P_{2} at temperature T is given as $d T=\frac{T}{c_{p}}\left(\frac{\partial V}{\partial T}\right)_{P} d P=\frac{T V^{\alpha}}{c_{p}} d P$.

4 Explain Legendre's transformations. Applying Legendre's transformations, 4+6=10 obtain Hamilton's Canonical equations of motion.

5 Establish Einstein's mass-energy relation and discuss some of its consequences.

6 What is meant by mean free path ? Show that if molecular diameter is $\mathbf{3 + 7}=\mathbf{1 0}$ ' σ ' and the molecular density is ' e ' the mean free path of the molecules
is given by $=\frac{1}{\pi p \sigma^{2}}$.

7 Obtain Maxwell's electromagnetic equations in the integral form.

8 Mention any 5 properties of stationary waves. Write the equation of the stationary wave formed after being superimposed with the wave $y=15 \sin \pi(0.20 x-0.8 t)$. The constituent waves of a stationary wave have amplitude, frequency and velocity as $8 \mathrm{~cm}, 30 \mathrm{~Hz}$ and $180 \mathrm{~cm} / \mathrm{s}$ respectively. Find out the equation of stationary wave.

9 A Zener diode with $V_{Z}=5.0 \mathrm{~V}$ has $R_{Z}=20 \mathrm{Ohms}$ and $I_{Z}=10 \mathrm{~mA}$. Calculate the upper and lower limits of V_{Z}, when I_{Z} changes from $-2 m A$ to $+2 m A$.

10 Find the characteristic equation of the matrix $A=\left|\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right|$ and $5+5=10$ verify that it is satisfied by A and hence obtain A^{-1}.

11 Describe the behaviour of particle in a one dimensional infinite potential $\mathbf{5}+\mathbf{5}=\mathbf{1 0}$ well in terms of Eigen values and function. For an electron confined to a one dimensionat potential box of length $2 A^{\circ}$, calculate the energies in $2^{\text {nd }}$ and $4^{\text {th }}$ quantum states (in eV).

12 NaCl crystal has F.C.C. structure. The density of NaCl is $2.18 \mathrm{gm} / \mathrm{cm}^{3}$. Calculate the distance between two adjacent atoms.

13 There are 3×10^{27} free electrons per cubic meter of Sodium. Calculate the Fermi energy.

14 Two masses m are connected by springs having equal spring constant, c so that the masses are free to slide on a frictionless table. The ends of the springs are attached with the fixed walls. Using Lagrangian equation, set up the differential equation of vibrating masses.

15 Explain the working of a Bridge rectifier using p-n junction diodes and obtain the expression for ripple factor and efficiency.

16 What is Paschen-Back effect ? Explain with energy level diagram

17 Explain the electrical and magnetic properties of nucleus using
Collective model.

18 A thick cylindrical metal wire of radius, R carries a current, I which may $7+\mathbf{3}=\mathbf{1 0}$ be viewed as a system of large number of thin current carrying coaxial cylindrical pipes running parallel to the axis of cylinder. Obtain an expression for current density, $J(r)$ for $0 \leq r \leq R$, which produces a magnetic field of constant magnitude throughout the interior of the wire. Estimate the magnetic energy stored per unit length of this thick wire.

