

BSF Head Constable Previous Year Papers RO 22 September 2019 - English

1.	Which among the following (a) Light (c) Momentum	is a from of Energy (b) Pressure (d) Power	12.	Decibel is (a) a musical instrument (b) The wavelength of noise		
2.	One fermi meter is equal to (a) 10^{-15} m (c) 10^{-12} m	(b) 10 ¹⁵ m (d) 10 ¹² m	13.	(c) A measure of sound leve(d) A musical noteRed colour appears during	sunrise and sun set because	
3.	Two masses of 1 kg and 4 k What is the ratio of their model $(a) \frac{1}{2}$	g have same Kinetic energy. omenta (b) $\frac{1}{4}$	14.	of (a) Refraction (c) Scattering The scale of temperature in	(b) Dispersion(d) Reflectionwhich the temperatures are	
4.	If two forces of 5N each are then the magnitude and dire	eacting along X and, Y – axis ection of resultant is		only positive is: (a) Farenheit (c) Kelvin	(b) Celcius (d) Reumer	
	(c) $-5\sqrt{2}, \pi/3$	(d) $-5\sqrt{2}, \pi/4$	15.	A big drop of water is bro surface energy:	ter is broken into smaller drops, the	
5.	The vector product of forc the centre of action represe (a) kinetic Energy (c) Potential energy	e (F) and distance (r) from nts: (b) Work (d) Torque		(a) increases (c) remain same decrease	(b) decreases(d) can increase as well as	
6.	A body executing uniform circular motion has at any instant its velocity vector and acceleration vector (a) along the same direction		16.	I absence of the earth's atm (a) black (c) green	osphere, the sky will appear (b) red (d) blue	
	(b) opposite direction(c) normal to each other(d) not related to each other	r	17.	(a) Atomic Nuclei (c) Molecules	(b) Hot metals (d) Electrons	
7.	The flying of bird is a conset (a) First law (c) Third law of motion	quence of Newton's (b) Second law (d) Both (B) and (c)	18.	In order to rectify an altern (a) Thermocouple (c) Triode	ating current one uses a: (b) Diode (d) Transister	
8.	A pendulum clock be ta revolving artificial satellite, (a) run slow	ken from the earth to a it will: (b) run fast (d) stop altogether	19.	Sound waves are not trabecause (a) They are absorbed by at (b) The have constant freque	normitted to long distance mosphere	
9.	A solid iron ball is heated. will have minimum percent	Which one of the following age increase		(c) The height of antenna re (d) Velocity of sound waves	equired should be very high is very less	
	(a) radius(c) volume	(b) surface area(d) density	20.	(a) Reflection (c) Total Internal Reflection	to: (b) Dispersion (d) High refractive index	
10.	An unpolarized beam is incident at an angle 60° on a glass surface and after reflection it is linearly polarized.The approximate refractive index of the glass is:(a) 1.4(b) 1.5(c) 1.7(d) 1.6		21.	If the radius of the earth de remains same, then the acce (a) increase by 1% (c) increase by 2%	ecreases by 1% and its mass eleration due to gravity: (b) decrease by 1% (d) decrease by 2%	
11.	Just before striking the gr kinetic energy of 980 J. If fr height it was dropped. (a) 980 m (c) 20.0 m	ound, a 0.5 kg body had a iction is ignored, from what (b) 5.0 m (d) 24.5 m	22.	A beam of monochromatic medium into another. W quantities does not change? (a) Wavelength (c) Velocity	 c light is passing from one hich one of the following (b) Frequency (d) Amplitude 	

23. Lambert's law is related to

(a) reflection(b) illuminatio(c) interference(d) refraction	n	energy is (a) 100 s	(b) 500 s
 24. When light travels from one medium to a internal reflection does not occur in w following cases. (a) from glass to water. (b) from glass (c) from water to air. (d) from water 25. A person standing before a furnace receive heat but 	to air. r to glass. es most of the	 (c) 40 s The direction of electric cu (a) direction of conven conductors (b) one ohm (c) the electric work done (d) None of these 	(d) 50 s rrent is always opposite to tional current in metallic
(a) Convection (b) Conduction (c) Radiation (d) Conduction and convection	35.	The space between the w vaccum in order to avoid h (a) radiation (b) convection (c) conduction	alls of a thermous flask is a eat exchange due to
 26. The resistance of a certain length of widdiameter of 6 mm is 5 ohm. The wire is dra the diameter becomes 3 mm. The new resis (a) 30 ohms. (b) 5 ohms. (c) 60 ohms. (d) 80 ohms. 	ire having a lwn such that stance will be 36.	(d) conduction and convenNumber of electric lines of area is called(a) flux	tion of force passing through unit (b) density
 Which one of the following pairs is not Correctly matched? (a) Capacitances—Coulomb/volt (b) Electric potentialVolt (c) Coulomb forceCoulomb-voltmeter (d) Electric field – Volt/meter 		 (c) electric field (d) None of these To increase the range of an ammeter we need to connect a suitable (a) low resistance in parallel (b) low resistance in series (c) high resistance in parallel 	
 28. What is the device that steps up or step voltage? (a) Dynamo (b) Conductor (c) Inductor (d) Transform 	ps down the 38.	(d) high resistance in serie A tuning fork vibtraes wit Its frequency is (a) 5	s h 2 vibrations in 0.4 second. (b) 6
29. An equilateral triangle has been constru- uniform wire whose resistance per unit cm^{-1} . If the length of each side of the trian the resistance across any side will be (a) 80/3Ω (b) 80/Ω (c) 40/Ω (d) 40/3 Ω	acted with a length is 4Ω 39. ngle is 10 cm,	(c) 8 A particle is undergoing sin period of 2 seconds and maximum speed in ms ⁻¹ is (a) 4π (c) $\pi/2$	(d) 2.5 mple harmonic motion with a amplitude of 2 meters. Its (b) 2π (d) π
 30. When all the molecules in a magnet arrange in the direction of the magnetic field, the called (a) Permeability (b) Satuation (c) Retentivity (d) Reluctance 	the themselves 40.	An object executes simplitude A. Its accelerat the displacement is (a) A/4 (c) A/2	ple harmonic motion with ion will be maximum when (b) 0 (d) A. 1
31. At the center of a bar, magnetism is (a) maximum.(b) minimum. (d) unknown	41.	The value of cosec (- 750°) (a) -2 (c) -3	is (b) 2 (d) None of these
 32. The largest voltage one can safely apply ohm 0.5 W resistor is: (a) 5 V (b) 25 V (c) 100 V (d) 0.01 V 	across a 50 42.	Sin($\pi/10$) sin($13\pi/10$) = ? (a) $\frac{1}{2}$ (c) $-\frac{1}{4}$	(b) $-\frac{1}{2}$ (d) 1

For More Study Material_Visit: adda247.com

43.	If n is a +ve integer $4^n - 3n$ (a) 3 (c) 8	– 1 is divisible by (b) 9 (d) 27	55.	The mean of 18 obser observation is increased by is	vation is -7 and if each y 3, the mean of the new set
44.	The distance of the point (x	, y) from y-axis is		(a) 3	(b) -3 (d) 2
	(a) x	(b) y		(0) -4	(u) 2
	(c) x	(d) y	56.	The arithmetic mean of 9	observations is 100 and that
45.	The lines $x \cos \alpha + y \sin \alpha$	= p_1 and x cos β + y sin β = p_2		of 6 is 80, the combined me	ean of all the 15 observations
10.	will be perpendicular if			(a) 100	(h) 80
	(a) $\alpha = \beta$	(b) $ \alpha - \beta = \frac{\pi}{2}$		(c) 90	(d) 92
	(c) $\alpha = \frac{\pi}{2}$	(d) $\alpha + \beta = \frac{\pi}{2}$	57	The Minimum value of	P = 6x + 16y subject to
	2		57.	constraints $x \le 40$, $y \ge 20$ at	1 = 0x + 10y subject to nd x. v ≥ 0 is
46.	The circle $x^2 + y^2 + 4x - 7y$	+ 12 = 0 cuts an intercept on		(a) 240	(b) 320
	y-axis of length			(c) 0	(d) None of these
	(a) 3	(b) 4		[1 _5 7]	
	(c) 7	(d) 1	58.	If $A = \begin{bmatrix} 1 & 3 & 7 \\ 0 & 7 & 9 \end{bmatrix}$, then t	race of matrix A is
47.	The length of the chord cu	t off by $y = 2x + 1$ from the		11 8 9	
	circle $x^2 + y^2 = 2$ is	5.5		(a) 17	(b) 25
	$(a)^{\frac{5}{-}}$	(b) ⁶		(c) 3	(d) 12
	6 6	$\sqrt{5}$	59.	If $f(X) = \log_{x^2(\ln x)} then f'(X)$	X) at x = e, is
	(c) $\frac{1}{\sqrt{5}}$	(d) $\frac{\sqrt{2}}{6}$		(a) 0	(b) 1
48	Faultion of the circle wit	h centre on the y-avis and		(c) 1/e	(d) 1/(2e)
40.	nassing through the origin	and $(2, 3)$ is	60	The normal to a given gurre	o is parallel to y avis if
	(a) $x^2 + y^2 + 13y = 0$	(b) $3x^2 + 3y^2 - 13y = 0$	00.	dy	d > dy
	(c) $x^2 + y^2 + 13y + 3 = 0$	(d) $6x^2 + 6y^2 - 13y = 0$		(a) $\frac{d}{dx} = 0$	$(b)\frac{d}{dx} = 1$
				(c) $\frac{dx}{dy} = 0$	$(d)\frac{dx}{dy} = 1$
49.	If the roots of the equat	ion $ax^2 + bx + c = 0$ are	(1		
	reciprocal to each other, th	en (b) b o	01.	(a) Zinc	(h) Connor
	(a) $a + c = 0$			(a) Linc	(d) Iron
	(c) a - c = 0	(d) None of these		(c) Magnesium	
50.	If a, b, c, d are in HP, then		62.	Which of the following nota	ation represents an isotope?
	(a) a + b>c + d	(b) $a + c > b + d$		(a) ${}^{3}K_{19}$	(b) $^{23}Na_{11}$
	(c) a + d>b + c	(d) None of these		$(C)^{-1}N_7$	(a) ¹¹ C ₆
51.	The number of possible out	comes, when a coin is tossed	63.	The ratio in the weight by	y which carbon and oxygen
	6 times, is			combine in a molecule of ca	arbon monoxide is
	(a) 36	(b) 64		(a) 3 : 4	(b) 3 : 3
	(c) 12	(d) None of these		(c) 3 : 2	(d) 3 : 1
	tanA-tanB c-h		64.	If a U-238 nucleus splits	into two identical parts, the
52.	In a $\triangle ABC$, if $\frac{\tan \alpha}{\tan A + \tan B} = \frac{1}{c}$, then A is equal to		two nuclei so produced wil	l be
	(a) 30°	(b) 45°		(a) radioactive	(b) stable
	(c) 60°	(d) 90°		(c) Isotope	(d) Isobar
53	The principal value of \sin^{-1}	$(-\sqrt{3}/2)$ is	65.	Hydrogen will not reduce h	leated
551	(a) $-2\pi/3$	$(h) = \pi/3$		(a) CuO	(b) Fe_2O_3
	(c) $4\pi/3$	(d) $5\pi/3$		(c) Al_2O_3	(d) SnO_2
	-	(4) 517 5	66	Aluminium surface are ofte	en 'anodized' This means the
54.	$\cot \left \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{4} +$	$\left -\frac{1}{8} \right = ?$	00.	deposition of a laver of	in anounder, rind means the
	(a) 1	(b) -1		(a) chromium oxide	(b) aluminium oxide
	(c) $\sqrt{2}$	$(d) -\sqrt{2}$		(c) nickel oxide	(d) zinc oxide
	C 7 *				

For More Study Material_Visit: adda247.com

67.	The most likely pH of an salt and ethyl alcohol is (a) 3 (c) 7	aqueous solution of sodium (b) 5 (d) 9	79.	Most of the explosions in r of (a) Hydrogen with oxygen (b) Oxygen with acetylene	nines occur due to the mixing
68.	An element M has a atomic 9. Its ion is represented as	mass 19 and atomic number		(c) Methane with air(d) Carbon dioxide with et	hane
	(a) M ⁺ (c) M ⁻	(b) M ²⁺ (d) M ²⁻	80.	Which one of the followin very ductile?	ng materials is very hard and
69.	Which one of the following oxygen in OF_2 ?	ng is the oxidation state of		(a) Carborundum (c) Cast iron	(b) Tungsten (d) Nichrome
	(a) +2 (c) +1	(b) -2 (d) -1	Dire suita	ections (81-85): Read sen able prepositions for the put	tences carefully and choose rpose.
70.	Which of the following s identifying an acid solution (a) NaCl (c) Na ₂ CO ₃	ubstances can be used for ? (b) KNO ₃ (d) K ₂ SO ₄	81.	She is proud her beau (a) at (c) of	ty. (b) on (d) about
71.	By which process Ethane ca (a) Addition (c) Substitution	an be obtained from Hexane? (b) Cracking (d) Polymerisation	82.	 (a) for (c) upto 	(b) to (d) at
72.	Benzene reacts with chlori catalyst to produce (a) benzene hexachloride (c) chlorobenzene	ne in the presence of an iron (b) benzyl chloride (d) benzoyl chloride	84.	(a) at (c) upon He entered the gate	(b) on (d) for without any difficulty
73.	Which one of the followin belongs to the same period	g sets of chemical elements ?	85.	(c) in This usually tends	(d) into
- 4	(c) Cl, Br, I	(d) Na, Cu, Mg		smallest challenge. (a) for	(b) to
74.	and pressure contain ec according to (a) Avogadro's law	(b) Charle's law	Dire CAP	ections (86-90): Write Sy	(d) at
75.	(c) Boyle's law The major portion of comb (a) Methane	(d) Graham's law ustible part of gobar gas is (b) Ethane	86.	(a) disparage (c) diminish	(b) mock (d) shrink
76.	(c) Ethylene Regarding the atom of a ch	(d) Acetylene emical element, the magnetic	87.	WEIRD (a) unnatural	(b) supernatural
	quantum number refers to (a) orientation (c) size	(b) shape (d) spin	88.	REMEDY (a) treatment	(b) cure
77.	The presence of which of atmosphere causes acid rai (a) Oxides of lead (c) Oxides of sulphur	ne of the following in the n? (b) Oxides of carbon (d) Hydrocarbon	89.	(c) rearess DAMSEL (a) spinster (c) bitch	(a) restorative (b) maiden (d) witch
78.	The stones formed in huma (a) calcium oxalate (c) magnesium sulphate	n kidney consist mostly of (b) sodium acetate (d) calcium	90.	VAGABOND (a) wanderer (c) tramper	(b) begger (d) traveller

91. Among the following, which was the capital of Raja Ranjit Singh's kingdom? (a) A ar

(a) Amritsar	(b) Pesnawa
(c) Lahore	(d) Multan

- 92. The Pallavas built Temples at which of the following places?
 - (a) Seringapatnam (c) Mahabalipuram

bJ	Madurai
d)	Halebid

- **93.** The brightest planet seen from the Earth (a) Pluto (b) Saturn
 - (c) Neptune (d) Venus
- **94.** The longest river in the world is the (a) Nile (b) Amazon
 - (c) Brahmaputra (d) Congo
- **95.** A solar eclipse occurs when
 - (a) the moon comes between the sun and the earth
 - (b) the earth comes between the sun and the moon
 - (c) the sun comes between the earth and the moon
 - (d) the sun, the moon and the earth are not in the same line

- **96.** After a shower of rain, a rainbow is seen (a) towards the sun (b) opposite the sun (c) anywhere, irrespective on the position of the sun (d) even in the absence of the sun
- **97.** Who is the Vice Chairman of Niti Ayog? (b) Dr. Arvind Pangaria (a) Dr. Rajiv Kumar (d) None of these (c) N. K Singh
- 98. In which of the following states river Ganga does not flow?
 - (a) Bihar (b) Chattisgarh (c) West Bengal (d) Jharkhand
- 99. Who won the Women World Badminton Championship-2019?
 - (a) Saina Nehwal (c) P V Sindhu
- (d) None of these

(b) Nozomi Okuhara

- 100. On 150th anniversary of Mahatma Gandhi, which movement is to start? (a) No tree felling
 - (c) No plasic use
- (b) No smoking
- (d) No diesel car