Q37. A mobile tower stands at the top of a hill. Consider the surface on which tower stand as a plane having points $A(0,1,2), B(3,4,-1)$ and $C(2,4,2)$ on it. The mobile tower is tied with 3 cables from the point A, Band C such that it stand vertically on the ground. The peak of the tower is at the point $(6,5,9)$, as shown in the figure.

Based on the above information, answer the following questions
(i) The equation of plane passing through the points $\mathrm{A}, \mathrm{Band} \mathrm{C}$ is
(ii) The height of the tower from the ground is
(iii) The equation of line of perpendicular drawn from the peak of tower to the ground is.

Q38. The given Integral $\int f(x) d x$ can be transformed into another form by changing the independent variable x to t by substituting $x=g(t)$

Consider $I=\int f(x) d x$
Put $x=g(t)$ so that $\frac{d x}{d t}=g^{\prime}(t)$
we write $\quad d x=g^{\prime}(t) d t$
Thus $\quad I=\int f(x) d x=\int f(g(t)) g^{\prime}(t) d t$
This change of variable formula is one of the important tools available to us in the name of integration by substitution.
(i) $\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$ is equal to
(ii) $\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$ is equal to
(iii) $\int \frac{\sin x}{(1+\cos x)^{2}} d x$ is equal to

SOLUTIONS:

S1.Ans.(a)
Sol.
Relation R is reflexive relation over set A as every element of A is related to itself in R.
Relation R is not symmetric as $(1,2)$ is in R but $(2,1)$ is not in R.
Relation R is also transitive as for a, b, c in A, if (a, b) is in R and (b, c) is in R, then (a, c) is also in R.
S2.Ans.(a)
Sol.
Given A is skew - symmetric matrix
$\therefore A^{T}=-A$
$\operatorname{Or} A=-A^{T}$
Squaring both sides, we get, $A^{2}=\left(-A^{T}\right)^{2}$
$\therefore A^{2}=\left(A^{T}\right)^{2}$
$\therefore A^{2}=\left(A^{2}\right)^{T}$
By definition of symmetric matrix , A^{2} is symmetric matrix.
S3.Ans.(d)

Sol.
We know that
Number of arbitrary constants = Order of differential equation
Since order = 4
\therefore Number of constants $=4$
S4.Ans.(d)
Sol.

$$
\begin{aligned}
& \text { If } y=\log \frac{x}{(1+x)}, \text { then } \frac{d y}{d x}=\frac{1+x}{x} \cdot \frac{d}{d x}\left(\frac{x}{1+x}\right) \\
& =\frac{1+x}{x} \cdot\left(\frac{(x+1) \frac{d}{d x}(x)-x \frac{d}{d x}(x+1)}{(x+1)^{2}}\right) \\
& =\frac{1+x}{x} \times \frac{x+1-x}{(x+1)^{2}} \\
& =\frac{1}{x(x+1)}
\end{aligned}
$$

S5.Ans.(d)
Sol.

Corner points	Value of $F=4 x+6 y$
$(0,2)$	$Z=4(0)+6(2)=12(\mathrm{~min})$
$(3,0)$	$Z=4(3)+6(0)=12(\mathrm{~min})$
$(6,0)$	$Z=4(6)+6(0)=24$
$(6,8)$	$Z=4(6)+6(8)=72(\mathrm{max})$
$(0,5)$	$Z=4(0)+6(5)=30$

The minimum value of F occurs at any point on the line segment joining the points $(0,2)$ and $(3,0)$

S6.Ans.(b)
Sol.
A stationary point of a function is a point where $f^{\prime}(x)=0$
For differentiating $f(x)$, we use logarithmic differentiation
$f(x)=x^{x}$
$=\log f(x)=x \log x$
Differentiating w.r.t x
$=\frac{1}{f(x)} \cdot f^{\prime}(x)=x \cdot \frac{1}{x}+1 \cdot \log x$
$=f^{\prime}(x)=x^{x}(1+\log x)$
$=x^{x}(1+\log x)=0$
Either $x^{x}=0$ or $1+\log x=0$
Since, x^{x} is exponential function ,It can never be zero.
Or $1+\log x=0 \Rightarrow x=\frac{1}{e}$
S7.Ans.(a)
Sol.
Given , $P(A \mid B)=P(B \mid A)$
$\Rightarrow \frac{P(A \cap B)}{P(A)}=\frac{P(A \cap B)}{P(B)}$
$=\frac{1}{P(A)}=\frac{1}{P(B)}$
$\therefore P(A)=P(B)$
S8.Ans.(d)
Sol.
If $R=\{(x, y): x+2 y=8\}$ is a relation N , then the range of R is:
$R=\{(2,3)\}$

Range $=\{3\}$
S9.Ans.(a)
Sol.
Let $f: R \rightarrow R$ be defined as $f(x)=3 x$.
For one - one
$\Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 3 x_{1}=3 x_{2}$
$\Rightarrow x_{1}=x_{2}$
$\therefore \mathrm{f}$ is one-one
For onto
Let $y=3 x$ then there exist $x=\frac{y}{3}$ s.t $f(x)=3 x=3 \times \frac{y}{3}=y$
$\therefore \mathrm{f}$ is onto.
S10.Ans.(b)
Sol.

$$
\Rightarrow\left[\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})\right]
$$

$=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\cot ^{-1}\left(-\cot \frac{\pi}{6}\right)$
$=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\cot ^{-1}\left(\cot \left(\pi-\frac{\pi}{6}\right)\right)$
$=\tan ^{-1}\left(\tan \frac{\pi}{3}\right)-\cot ^{-1}\left(\cot \frac{5 \pi}{6}\right)$
$\left[\because \tan ^{-1}(\tan \theta)=\theta \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right.$ and $\left.\cot ^{-1}(\cot \theta)=\theta \forall \theta \in(0, \pi)\right]$
$=\frac{\pi}{3}-\frac{5 \pi}{6}=-\frac{3 \pi}{6}=-\frac{\pi}{2}$
S11.Ans.(b)
Sol.

$$
\begin{aligned}
& \Rightarrow \cos \left(\sin ^{-1} \frac{2}{5}+\cos ^{-1} x\right)=0 \\
& \Rightarrow \sin ^{-1} \frac{2}{5}+\cos ^{1} x=\cos ^{-1} 0 \\
& =\sin ^{-1} \frac{2}{5}+\cos ^{-1} x=\frac{\pi}{2} \\
& =\sin ^{-1} \frac{2}{5}=\frac{\pi}{2}-\cos ^{-1} x \\
& =\sin \left(\sin ^{-1} \frac{2}{5}\right)=\sin \left(\frac{\pi}{2}-\cos ^{-1} x\right) \\
& =\frac{2}{5}=\cos \left(\cos ^{-1} x\right) \\
& =x=\frac{2}{5}
\end{aligned}
$$

S12.Ans.(c)
Sol.
If $\vec{a}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $\vec{b}=2 \hat{\imath}+\hat{\jmath}$,
then value of $\vec{a} \cdot \vec{b}=(3 \hat{\imath}-2 \hat{\jmath}+\hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath})=6-2=4$
S13.Ans.(a)
Sol.

$$
\begin{aligned}
& \Rightarrow I=\int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x \\
& =\int \frac{\cos ^{2} x-\sin ^{2} x}{(\cos x+\sin x)^{2}} d x \quad\left(\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =\int \frac{(\cos x-\sin x)(\cos x+\sin x)}{(\cos x+\sin x)^{2}} d x \\
& =\int \frac{\cos x-\sin x}{\cos x+\sin x} d x \\
& \text { Let } \cos x+\sin x=t \\
& \text { Differentiating w.r.t. }
\end{aligned}
$$

$-\sin x+\cos x=\frac{d t}{d x}$

$$
\begin{aligned}
& d x=\frac{1}{\cos x-\sin x} d t \\
& =\int \frac{\cos x-\sin x}{t} \times \frac{d t}{\cos x-\sin x} \\
& =\int \frac{d t}{t} \\
& =\log |t|+C \\
& =\log |\cos x+\sin x|+C
\end{aligned}
$$

S14.Ans.(d)
Sol. $\frac{d}{d x}\left(3^{x}\right)$
$=\frac{d}{d x}\left(e^{x \log 3}\right)$
$=e^{x \log 3} \cdot \frac{d}{d x}(x \log 3)$
$=e^{x \log 3} \cdot \log 3$
$=3^{x} \cdot \log 3$
S15.Ans.(d)
Sol.
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} . A$
So, here $\operatorname{adj}(\operatorname{adj} A)=|A|^{0} . A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=A$
S16.Ans.(d)
Sol.
We know that
Number oof arbitrary constants = Order of differential equation
Since order $=4$
\therefore Number of constants $=4$
S17.Ans.(a)
Sol.
If A and B are independent events.
It implies-
$P(A \cap B)=P(A) \cdot P(B)$
$P\left(A^{\prime} \cap B\right)=P\left(A^{\prime}\right) P(B)$
And $P\left(A \cap B^{\prime}\right)=P(A) P\left(B^{\prime}\right)$
$\mathrm{P}($ exactly one of A, B occurs $)=P\left(A^{\prime} \cap B\right)+P\left(A \cap B^{\prime}\right)$
$\Rightarrow \mathrm{P}($ exactly one of A, B occurs $)=\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A}) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$
\therefore Statement Is true.
S18.Ans.(a)
Sol.
Let $P=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4\end{array}\right]$
Then $C_{31} \cdot C_{23}=$?
$C_{31}=(-1)^{3+1} \cdot M_{31}$
$=M_{31}=\left|\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right|=3-4=-1$
$=C_{31}=(-1)^{3+1} \cdot M_{31}=-1$
$C_{23}=(-1)^{2+3} \cdot M_{23}$
$=M_{23}=\left|\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right|=2+3=5$
$=C_{23}=(-1)^{2+3} \cdot M_{23}=(-1)^{2+3} \cdot 5=-5$
Then $C_{31} \cdot C_{23}=-1 \times(-5)=5$
S19.Ans.(a)
Sol.
Given points are (3, 4-7) and (1,-1, 6)

Position vector of the point are $\vec{a}=3 \hat{\imath}+4 \hat{\jmath}-7 \hat{k}$ and $\vec{b}=\hat{\imath}-\hat{\jmath}+6 \hat{k}$
Vector equation of the a line passing through the point \vec{a} and \vec{b} is given by :
$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
$\Rightarrow \vec{r}=3 \hat{\imath}+4 \hat{\jmath}-7 \hat{k}+\lambda((\hat{\imath}-\hat{\jmath}+6 \hat{k})-(3 \hat{\imath}+4 \hat{\jmath}-7 \hat{k}))$
Substituting $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$\Rightarrow x \hat{\imath}+y \hat{\jmath}+z \hat{k}=3 \hat{\imath}+4 \hat{\jmath}-7 \hat{k}+\lambda(-2 \hat{\imath}-5 \hat{\jmath}+13 \hat{k})$
$\therefore(x-3) \hat{\imath}+(y-4) \hat{\jmath}+(z+7) \hat{k}=\lambda(-2 \hat{\imath}-5 \hat{\jmath}+13 \hat{k})$
\therefore Both A and R are true and R is the correct explanation of A .
S20.Ans.(a)
Sol. 0
It is given that $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$
$\Rightarrow P(A \cap B)=P(A)+P(B)-P(A \cup B)$
$=\frac{6}{11}+\frac{5}{11}-\frac{7}{11}=\frac{4}{11}$
It is known that,$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$\Rightarrow P(A \mid B)=\frac{4}{5}$
\therefore Both A and R are true and R is the correct explanation of A .

SECTION B

Sol 21
$I=\int \frac{\left(x^{4}-x\right)^{\frac{1}{4}}}{x^{5}} d x$
$=\int \frac{x\left(1-\frac{1}{x^{3}}\right)^{\frac{1}{4}}}{x^{5}} d x$
$=\int \frac{\left(1-\frac{1}{x^{3}}\right)^{\frac{1}{4}}}{x^{4}} d x$
Let $\left(1-\frac{1}{x^{3}}\right)=t^{4}$
Differentiate w.r.t x
$\Rightarrow \frac{3}{x^{4}}=4 t^{3} \frac{d t}{d x}$
$=\frac{d x}{x^{4}}=\frac{4 t^{3}}{3} d t$
Now,
$\Rightarrow I=\int t \cdot \frac{4 t^{3}}{3} d t$
$=\frac{4}{3} \int t^{4} d t$
$=\frac{4}{3}\left[\frac{t^{5}}{5}\right]+C$
$=\frac{4}{15}\left(1-\frac{1}{x^{3}}\right)^{\frac{5}{4}}+C$
Sol 22.
Given differential equation of the family of circles having a centre on the y-axis is $x^{2}+(y-b)^{2}=r^{2}$ Given the radius of the circle is 3 units.
The differential; equation of the family of circles having a centre on the y-axis and radius 3 units is as below:
$x^{2}+(y-b)^{2}=3^{2}$
$x^{2}+(y-b)^{2}=9$.
Differentiating (i) with respect to x ,
$2 x+2(y-b) \cdot y^{\prime}=0$
$\Rightarrow(y-b) \cdot y^{\prime}=-x$
$\Rightarrow(y-b)=-x / y^{\prime}$
Substituting (ii) in (i),
$\Rightarrow x^{2}+\left(-\frac{x}{y^{\prime}}\right)^{2}=9$
$=x^{2}\left(1+\frac{1}{\left(y^{\prime}\right)^{2}}\right)=9$
$=x^{2}\left(\left(y^{\prime}\right)^{2}+1\right)=9 .\left(y^{\prime}\right)^{2}$
$=\left(x^{2}-9\right)\left(y^{\prime}\right)^{2}+x^{2}=0$
Hence, this is the required differential equation.
Or
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\sqrt[3]{\frac{d y}{d x}}+(1+x)=0$
$=\left\{\frac{d^{2} y}{d x^{2}}+(1+x)\right\}^{3}=-\frac{d y}{d x}$
Thus, order is 2 and degree is 3 .So the sum is 5 .
Sol 23.
If $\vec{a}=\hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}-\hat{\jmath}$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 1 \\ 1 & -1 & 0\end{array}\right|$
$=(0+1) \hat{\imath}-(0-1) \hat{\jmath}+(-1-2) \hat{k}$
$=\hat{\imath}+\hat{\jmath}-3 \hat{k}$
then find the value of $|\vec{a} \times \vec{b}|=\sqrt{1^{2}+1^{2}+(-3)^{2}}=\sqrt{2+9}=\sqrt{11}$
Or
Given that: $|\vec{a}+\vec{b}|=|\vec{a}|$
To prove: $(2 \vec{a}+\vec{b}) \cdot \vec{b}=0$
Since, $|\vec{a}+\vec{b}|=|\vec{a}|$
Squaring both sides , we get
$\Rightarrow|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}$
$\Rightarrow(\vec{a}+\vec{b})(\vec{a}+\vec{b})=|\vec{a}|^{2}$
$\Rightarrow|\vec{a}|^{2}+2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}=|\vec{a}|^{2}$
$\Rightarrow|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=0$
$\Rightarrow(2 \vec{a}+\vec{b}) \cdot \vec{b}=0$
Hence, $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.
Sol
24.

If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$,
then $\left(A^{2}-5 A\right)=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]-5\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
$=\left[\begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2\end{array}\right]-\left[\begin{array}{ccc}10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-5 & -1 & -3 \\
-1 & -7 & -10 \\
-5 & 4 & -2
\end{array}\right]
$$

Sol 25.
Let the distance covered with speed of 25 kmph be ' x ' km and the distance covered with speed of 40 kmph be ' y ' km
Total distance covered be 'z' km
The L.P.P of the above problem is
Maximize $z=x+y$
Subject to constraints
$4 x+5 y \leq 200$
$\frac{x}{50}+\frac{y}{40} \leq 1$
$x \geq 0, y \geq 0$

SECTION C

Sol
26.

Let us take
A: car needs service
E_{1} : car is rented from x
E_{2} : car is rented from y
E_{3} : car is rented from z
We have to find the probability that car is chosen from z, if car needs service
$P\left(E_{3} / A\right)$
To find not chosen probability
$P\left(E_{1}\right)=50 \%=\frac{50}{100}$
$P\left(E_{2}\right)=30 \%=\frac{30}{100}$
$P\left(E_{3}\right)=20 \%=\frac{20}{100}$
$P\left(A / E_{1}\right)=$ Probability that car needs service $=9 \%=\frac{9}{100}$
$P\left(A / E_{2}\right)=12 \%=\frac{12}{100}$
$P\left(A / E_{3}\right)=10 \%=\frac{10}{100}$
$P\left(E_{3} / A\right)=\frac{P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{A}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{A}{E_{3}}\right)}$
$=\frac{\frac{20}{100} \times \frac{10}{100}}{\frac{50}{100} \times \frac{9}{100}+\frac{30}{100} \times \frac{12}{100}+\frac{20}{100} \times \frac{10}{100}}$
$=\frac{200}{450+360+200}$
$=\frac{200}{1010}$
$=\frac{20}{101}$
According to question we have to find car is not chosen from agency $=4$, if it needs service.
So , $1-P\left(\frac{E_{3}}{A}\right)$
$=1-\frac{20}{101}$
$=\frac{101-20}{101}$
$=\frac{81}{101}$

Sol
27.

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x \tag{1}
\end{equation*}
$$

$I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2}\left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos x+\sin x} d x$
(1) $+(2)$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x+\cos ^{2} x}{\cos x+\sin x} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x+\sin x} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\frac{1}{\sqrt{2}}}{\sin \frac{\pi}{4} \cdot \cos x+\cos \frac{\pi}{4} \cdot \sin x} d x$
$=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin \left(\frac{\pi}{4}+x\right)} d x$
$=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \operatorname{cosec}\left(\frac{\pi}{4}+x\right) d x$
Put $\frac{\pi}{4}+x=t$
$d x=d t$
$=\frac{1}{\sqrt{2}} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \operatorname{cosec} t d t$
$=\frac{1}{\sqrt{2}}\left[\ln \left|\tan \frac{t}{2}\right|\right]_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}$
$=\frac{1}{\sqrt{2}}\left[\ln \left(\tan \frac{3 \pi}{8}\right)^{4}-\ln \left(\tan \frac{\pi}{8}\right)\right]$
Now,
$2 I=\frac{1}{\sqrt{2}}\left[\ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\right]$
$I=\frac{1}{2 \sqrt{2}} \log (\sqrt{2})^{2}$
$I=\frac{1}{\sqrt{2}} \log \sqrt{2}$
Sol 28.
The given function $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
$\Rightarrow \lim _{x \rightarrow 0}\left(\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}\right)=f(0)$
$=\lim _{x \rightarrow 0}\left(\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}\right)\left(\frac{\sqrt{1+k x}+\sqrt{1-k x}}{\sqrt{1+k x}+\sqrt{1-k x}}\right)=\frac{0+1}{0-1}$
$=\lim _{x \rightarrow 0} \frac{2 k}{\sqrt{1+k x}+\sqrt{1-k x}}=-1$
$=\frac{2 k}{2}=-1$
$=k=-1$
Or
What values of $\lambda, f(x)=\left\{\begin{array}{c}\lambda\left(x^{2}-2 x\right) \text {, if } x \leq 0 \\ 4 x+1, \text { if } x>0\end{array}\right.$ is the function is continuous at $\mathrm{x}=0$?
L.H.L
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)$
$=\lim _{h \rightarrow 0} f(-h)$
$=\lim _{h \rightarrow 0} \lambda\left((-h)^{2}-2(-h)\right)$
$=0$
R.H.L
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)$
$=\lim _{h \rightarrow 0} f(h)$
$=\lim _{h \rightarrow 0} 4 h+1$
$=1$
\because L.H.L \neq R.H.L
$\therefore f(x)$ is not continuous at $\mathrm{x}=0$
So, for any value of $\lambda \in R, \mathrm{f}$ is discontinuous at $\mathrm{x}=0$
The given points are $\mathrm{A}(1,10), \mathrm{B}(1,2,1)$ and $\mathrm{C}(-2,2,-1)$.
$\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1\end{array}\right|=(-2-2)-(2+2)=-8 \neq 0$
Therefore, a plane will pass through the points A, B and C
It is known that the equation of the plane through the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$
is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-1 & y-1 & z \\ 0 & 1 & 1 \\ -3 & 1 & -1\end{array}\right|=0$
$=(-2)(x-1)-3(y-1)+3 z=0$
$=-2 x-3 y+3 z+2+3=0$
$=-2 x-3 y+3 z=-5$
$=2 x+3 y-3 z=5$
This is the cartesian equation of the required plane.
Or
We know, the shortest distance between the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is
$d=\left|\frac{\left(\vec{a}-\overrightarrow{a_{1}}\right)\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|$
On comparing the given equations $\vec{r}=(4 \hat{\imath}-\hat{\jmath})+\lambda(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})$ and $\vec{r}=(\hat{\imath}-\hat{\jmath}+2 \hat{k})+\mu(2 \hat{\imath}+$
$4 \hat{\jmath}-5 \hat{k}$) with $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ respectively. We have
$\overrightarrow{a_{1}}=4 \hat{\imath}-\hat{\jmath}, \overrightarrow{a_{2}}=\hat{\imath}-\hat{\jmath}+2 \widehat{k}, \overrightarrow{b_{1}}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}, \overrightarrow{b_{2}}=2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$
Now, $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=-3 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}$
And $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5\end{array}\right|=2 \hat{\imath}-\hat{\jmath}+0 \hat{k}$
$\therefore\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=(-3 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}) \cdot(2 \hat{\imath}-\hat{\jmath}+0 \hat{k})=-6$
And $\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$
\therefore Shortest distance, $\mathrm{d}=\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|=\left|\frac{6}{\sqrt{5}}\right|=\frac{6}{\sqrt{5}}$
Sol
$I=\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$
$=\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x$
$=\int \frac{\sin ^{2} x}{\cos ^{2} x} d x$
$=\int \tan ^{2} x d x$
$=\int\left(\sec ^{2} x-1\right) d x$
$=\int \sec ^{2} x d x-\int d x$
$=\tan x-x+C$
Or
$I=\int_{0}^{\frac{\pi}{4}} \sin 4 x \sin 3 x d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} 2 \sin 4 x \cdot \sin 3 x d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}[\cos (4 x-3 x)-\cos (4 x+3 x)] \cdot d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos x d x-\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos 7 x d x$
$=\frac{1}{2}[\sin x]_{0}^{\frac{\pi}{4}}-\frac{1}{2}\left[\frac{\sin 7 x}{7}\right]_{0}^{\frac{\pi}{4}}$
$=\frac{1}{2}\left[\sin \frac{\pi}{4}-\sin 0\right]-\frac{1}{14}\left[\sin \frac{7 \pi}{4}-\sin 0\right]$
$=\frac{1}{2} \times \frac{1}{\sqrt{2}}-\frac{1}{14} \times\left(\sin \left(2 \pi-\frac{\pi}{4}\right)\right)$
$=\frac{1}{2 \sqrt{2}}-\frac{1}{14}\left(-\sin \frac{\pi}{4}\right)$
$=\frac{1}{2 \sqrt{2}}+\frac{1}{14 \sqrt{2}}$
$=\frac{7+1}{14 \sqrt{2}}$
$=\frac{4}{7 \sqrt{2}}$
Sol 31.
If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$. Find
(i) $\Rightarrow P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
$=0.4=\frac{P(A \cap B)}{P(A)}$
$=0.4=\frac{P(A \cap B)}{0.8}$
$=P(A \cap B)=0.4 \times 0.8=0.32$
(ii) $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=0.64$
(iii) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$=0.8+0.5-0.32$
$=0.98$
SECTION D
Sol
32.

If $A=\left|\begin{array}{ccc}3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1\end{array}\right|$, Find A^{-1}
$\Rightarrow A^{-1}=\frac{\operatorname{adj} A}{|A|}$
$\Rightarrow|A|=3\left|\begin{array}{ll}2 & -3 \\ 0 & -1\end{array}\right|-1\left|\begin{array}{ll}3 & -3 \\ 2 & -1\end{array}\right|+2\left|\begin{array}{ll}3 & 2 \\ 2 & 0\end{array}\right|$
$=3(-2)-1(-3+6)+2(0-4)$
$=-6-3-8$

$$
=-17
$$

$\Rightarrow \operatorname{adj} A=\left[\begin{array}{ccc}-2 & -3 & -4 \\ 1 & -7 & 2 \\ -7 & 15 & 3\end{array}\right]^{T}$

$$
=\left[\begin{array}{ccc}
-2 & 1 & -7 \\
-3 & -7 & 15 \\
-4, & 2 & 3
\end{array}\right]
$$

$\Rightarrow A^{-1}=-\frac{1}{17}\left[\begin{array}{ccc}-2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3\end{array}\right]$
Or
Solve the linear system of equation:
$x+3 y-2 z=0$
$2 x-3 y+z=1$
$4 x-3 y+z=3$
$\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & -3 & 1 \\ 4 & -3 & 1\end{array}\right] \begin{aligned} & 0 \\ & 1 \\ & 3\end{aligned}$
$R_{2}-2 R_{1} \rightarrow R_{2}$
$\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & -9 & 5 \\ 4 & -3 & 1\end{array}\right] \begin{gathered}0 \\ 1\end{gathered}$
$R_{3}-4 R_{1} \rightarrow R_{3}$
$\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & -9 & 5 \\ 0 & -15 & 9\end{array}\right] \begin{aligned} & 0 \\ & 1 \\ & 3\end{aligned}$
$R_{3}-\frac{5}{3} R_{2} \rightarrow R_{3}$
$\left[\begin{array}{ccc}1 & 3 & -2 \\ 0 & -9 & 5 \\ 0 & 0 & \frac{2}{3}\end{array}\right] \frac{0}{3}$
$\Rightarrow \frac{2}{3} z=\frac{4}{3}$
$=z=2$
$\Rightarrow-9 y+5 z=1$
$=-9 y+10=1$
$=-9 y=-9$
$=y=1$
$\Rightarrow x+3 y-2 z=0$
$=x+3-4=0$
$=x=1$
Sol
33.

We have $y=\sqrt{x} \ldots$ (i), $2 y+3=x$
Solving (i) and (ii)
$\Rightarrow 2 \sqrt{x}+3=x$
$=(x-3)^{2}=4 x$
$=x^{2}-10 x+9=0$
$\therefore x=1,9 \Rightarrow y=-1,3$
But note that $y=\sqrt{x}$ so,$y>0$
\therefore the point of intersection is $(9,3)$
Now, required area $=\int_{0}^{3}(2 y+3) d y-\int_{0}^{3} y^{2} d y$
$=\left[\frac{(2 y+3)^{2}}{2 \times 2}-\frac{y^{3}}{3}\right]_{0}^{3}$
$=\left[\frac{81}{2 \times 2}-\frac{27}{3}\right]-\left[\frac{9}{2 \times 2}-0\right]$
$=\frac{72}{2 \times 2}-\frac{27}{3}$
$=18-9$
$=9 \mathrm{sq}$, units

Or
$\left\{(x, y): x^{2}+y^{2} \leq 8, x^{2} \leq 2 y\right\}$
The given curves are $x^{2}+y^{2}=8$
$x^{2}=2 y$

Solving (1) and (2)
$\Rightarrow 8-y^{2}=2 y$
$=y=2,-4$
$\Rightarrow y=2($ as $y>0)$
Substituting $\mathrm{y}=2$ in (2), we get
$x^{2}=4 \Rightarrow x=-2$ or 2
Required area $=\int_{-2}^{2} \sqrt{8-x^{2}} d x-\int_{-2}^{2} \frac{x^{2}}{2} d x$
$=2\left[\int_{0}^{2} \sqrt{(2 \sqrt{2})^{2}-x^{2}} d x-\int_{0}^{2} \frac{x^{2}}{2} d x\right]$
$=2\left[\frac{x}{2} \sqrt{8-x^{2}}+\frac{8}{2} \sin ^{-1}\left(\frac{x}{2 \sqrt{2}}\right)\right]_{0}^{2}-\frac{1}{3}\left[x^{3}\right]_{0}^{2}$
$=2\left[2+4 \times \frac{\pi}{4}-0\right]-\frac{1}{3}[8-0]$
$=4+2 \pi-\frac{8}{3}$
$=2 \pi+\frac{4}{3}$ sq. units
Sol 34 .
$x+2 y \geq 10$

x	0	10
y	5	0

$3 x+4 y \leq 24$

x	0	8
y	6	0

Corner points	Value of Z
$(0,6)$	3000
(0.5)	2500
$(4,3)$	$2300(\mathrm{~min})$

Hence Z is minimum at $(4,3)$
Sol 35.
Let A : team A is declared as a winner Let B : team B is declared as a winner.
Let E : die shows six on the throw.

Clearly , $P(E)=\frac{1}{6}$
$P(\bar{E})=1-P(E)=1-\frac{1}{6}=\frac{5}{6}$
If captain of team A start then he may get a six in $1^{\text {st }}$ throw or $3^{\text {rd }}$ throw or $5^{\text {th }}$ throw and so on.
$\therefore P(A)=P(E)+P((\bar{E})(\bar{E})(E))+P((\bar{E})(\bar{E})(\bar{E})(\bar{E}) E)+\cdots$
Using sum of infinite G.P. $S_{\text {infinite }}=\frac{a}{1-r}$
$=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}+\cdots=\frac{\frac{1}{6}}{1-\frac{25}{36}}$
i.e., $P(A)=\frac{6}{11}$ and $P(B)=1-P(A)=1-\frac{6}{11}=\frac{5}{11}$

The decision of referee wasn't fair since team A has more chances of being declared a winner despite the fact that both the teams had secured same number of goals.

SECTION E

36.

(i)Total number of tickets $=50$

Let event $\mathrm{A}=$ First ticket shows even number and $\mathrm{B}=$ Second ticket shows even number
Now, $\mathrm{P}($ Both tickets show even number $)=P(A) \cdot P(B \mid A)=\frac{25}{50} \cdot \frac{24}{49}=\frac{12}{49}$
(ii) Teacher ask Mivaan, what is the probability that both tickets drawn by Aadya shows odd number? Let event $\mathrm{A}=$ First ticket shows odd number and $\mathrm{B}=$ Second ticket shows odd number
Now , $\mathrm{P}($ Both tickets show odd number $)=P(A) \cdot P(B \mid A)=\frac{25}{50} \cdot \frac{24}{49}=\frac{12}{49}$
(iii) Teacher ask Deepak, what is the probability that tickets drawn by Mivaan, shows a multiple of 4 on one ticket and a multiple 5 on other ticket
Required probability $=P$ (One number is a multiple of 4 and other is a multiple of 5)
$=P$ (multiple of 5 on first ticket and multiple of 4 on second ticket $)+(P$ (multiple of 4 on first ticket and multiple of 5 on second ticket)
$=\frac{10}{50} \cdot \frac{12}{49}+\frac{12}{50} \cdot \frac{10}{49}=\frac{12}{245}+\frac{12}{245}=\frac{24}{245}$
37.
(i) The equation of plane passing through three non - collinear points is given by

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{2} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0 \\
& =\left|\begin{array}{ccc}
x & y-1 & z-2 \\
3-0 & 4-1 & -1-2 \\
2-0 & 4-1 & 2-2
\end{array}\right|=0 \\
& =\left|\begin{array}{ccc}
x & y-1 & z-2 \\
3 & 3 & -3 \\
2 & 3 & 0
\end{array}\right| \\
& =x(0+9)-(y-1)(0+6)+(z-2)(9-6)=0 \\
& =9 x-6 y+3 z-6=0 \\
& =3 x-2 y+z=0
\end{aligned}
$$

(ii) Height of tower $=$ Perpendicular distance from the point $(6,5,9)$ to the plane $3 x-2 y+z=0$
$=\left|\frac{18-10+9}{\sqrt{3^{2}+(-2)^{2}+1^{2}}}\right|=\frac{17}{\sqrt{14}}$ units
(iii) Direction ratio's of perpendicular are $\langle 3,-2,1\rangle$

As we know that : Perpendicular is parallel to the normal to the plane
Since, perpendicular is passing through the point $(6,5,9)$, therefore its equation is $\frac{x-6}{3}=\frac{y-5}{-2}=$ $\frac{z-9}{1}$
Sol
38.
(i) $I=\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$

$$
\begin{aligned}
& \text { Let } \tan ^{-1} x=t \\
& \frac{d x}{1+x^{2}}=d t \\
& I=\int e^{t} d t \\
& =e^{t}+C \\
& \quad=e^{\tan ^{-1} x}+C
\end{aligned}
$$

(ii) $I=\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x$

Let $\sin ^{-1} x=t$
$=\frac{1}{\sqrt{1-x^{2}}} d x=d t$
$I=\int t d t$
$=\frac{t^{2}}{2}+C$
$=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+C$
(iii) $I=\int \frac{\sin x}{(1+\cos x)^{2}} d x$

Let $1+\cos x=t$
$=-\sin \mathrm{x} . \mathrm{dx}=\mathrm{dt}$
$I=\int \frac{-d t}{t^{2}}$
$=\int-t^{-2} d t$
$=\frac{1}{t}+C$
$=\frac{1}{1+\cos x}+C$

