Mensuration Formulas

2D Shapes

Perimeter Formulas

- Perimeter of a Square $=4 \mathrm{~s}$, where $\mathrm{s}=$ side length
- Perimeter of a Triangle $=a+b+c$, where a, b, and c are triangle sides
- Perimeter of an equilateral triangle $=3 \mathrm{a}$, where $\mathrm{a}=$ side length
- Perimeter of a rectangle $=2(1+b)$, where $l=$ length and $b=$ breadth
- Perimeter of a regular hexagon $=6 \mathrm{~s}$, where $\mathrm{s}=$ side of the hexagon
- Perimeter of a regular pentagon $=5 \mathrm{~s}$, where s represents the side of a pentagon

Area Formula

- Area of a Circle $=\Pi . r^{2}$, where $r=$ radius of the circle
- Area of a Square $=4 . \mathrm{s}^{2}$, where $\mathrm{s}=$ side of the square
- Area of a Rectangle $=1 \times b$, where $1=$ length and $b=$ breadth
- Area of a Trapezium $=$ height $\times($ sum of parallel sides $) / 2$
- Area of a Rhombus $=(1 / 2) \times \mathrm{d} 1 \times \mathrm{d} 2$; where d 1 and d2 are the two diagonals of the rhombus
- Area of an equilateral triangle $=s^{2}(\sqrt{3} / 4)$, where $s=$ side of the equilateral triangle
- Area of a regular hexagon $=\left(3 \times \sqrt{ } 3 \mathrm{xa}^{2}\right) / 2$

3D Shapes

Area Formulas

- Surface area of Cuboid $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$; where $1, \mathrm{~b}$ and h represent the length, breadth and height of the cuboid.
- Surface area of Cube $=6 s^{2}$; where s represents the side of the cube.
- Surface area of cylinder $=2 \operatorname{Tr}(\mathrm{r}+\mathrm{h})$; where h represents the height and r represents the radius of the cylinder.
- Surface Area of a Cone $=\operatorname{\Pi r}(\mathrm{r}+\mathrm{l})$
- Curved Surface Area of a Cone $=\Pi r l$
- Curved Surface Area of a Cylinder $=2 \Pi r h$

Volume Formulas

- Volume of Cuboid $=1 \times b \times h$; where $1, b$ and h represent the length, breadth and height of the cuboid.
- Volume of Cube $=s^{3}$; where s represents the side of the cube.
- Volume of Cylinder $=\Pi r^{2} \mathrm{~h}$; where h represents the height and r represents the radius of the cylinder.
- Volume of a Hollow Cylinder $=\Pi . \mathrm{h}\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$, where $\mathrm{R}=$ outer radius, $\mathrm{r}=$ inner radius
- Volume of a normal square pyramid $=(1 / 3) \times \mathrm{h} \mathrm{x} \mathrm{s}^{2}$, where $\mathrm{s}=$ length of one of the sides of a square base and h is the height of the pyramid

$$
\Delta
$$

