2023-24

MODEL PAPER

CLASS-10

SUBJECT - MATHEMATICS

TIME:- 3 hrs 15 mins

M.M. 70

Instruction- The first 15 minutes are allotted to the candidates for reading the question paper.

GENERAL INSTRUCTIONS:-

- 1. All questions are compulsory.
- 2. This question paper has two sections.
- 3. Section A has 20 multiple choice questions of 01 marks each, the answers to which are to be given on the OMR Sheet
- 4. After writing the answers on OMR sheet, do not cut it and do not use eraser, whitener etc.
- 5. Section 'B' contains descriptive questions of 50 marks.
- 6. There are total 5 questions in this section.
- **7.** It is clearly written at the beginning of each question as to how many sections have to be attempted.
- 8. Marks allotted to the questions are indicated against them.
- **9.** Start from the first question and continue till the end. Don't waste time on questions you are unable to solve.

SECTION A MULTIPLE CHOICE QUESTION

1.	L.C.N	1. of any two numbers is 6	0 and	H.C.F is 3. If one number	1
	is 12	then other number will be)		1
	(i)	20	(ii)	15	
	(iii)	180	(iv)	36	
2.	The num	product of a non-zero rati ber is	onal 1	number and an irrational	1
	(i)	Always irrational number	(ii)	Always rational number	
	(iii)	Rational or Irrational number	(iv)	One	
3.	Solut will b	tions of linear equations x +	2y – 5	5 = 0 and $4x + 8y - 20 = 0$	1
	(i)	Unique Solution	(ii)	Inifinitely many solutions	
	(iii)	No Solution	(iv)	Two Solutions	
4.	The rema	largest number by which ainders 5 and 8 respectivel	dividi y is	ng 70 and 125 gives	1
	(i)	13	(ii)	65	
	(iii)	875	(iv)	1750	
5.	The	sum of the first 5 multiples	of 3 i	S	1
	(i)	45	(ii)	55	
	(iii)	65	(iv)	75	

6.	Cons	sider the following	statement	ts about	the quadratic	1	
	ques	stion $2x^2 - 4x + 3 =$	0			1	
	(;	a) The discriminan	t of the give	en equation	n is less than 0.		
	()	o) The equation ha	s no real ro	ots.			
	(0	c) The discriminan	t of the equ	ation is ze	ro.		
	(0	d) The roots of give	en equation	are real.			
	Sele	ct the correct option f	from the fol	lowing.			
	(i)	a and b are correct	(ii)	a and d a	re correct		
	(iii)	c and d are correct	(iv)	only a is o	correct		
7	AOB	c is a rectangle with th	ree vertices	noints A (O	(0,0)		
/.	B (5, 0). Its diagonal is						
	(i)	5	(ii)	3			
	(iii)	$\sqrt{34}$	(iv)	4			
8.	If th	e equation $x^2 + kx - \frac{1}{2}$	$\frac{5}{4} = 0$ has or	ne root $\frac{1}{2}$	then the value	1	
	of k is-						
	(i)	2	(ii)	-2			
	(iii)	$\frac{1}{4}$	(iv)	$\frac{1}{2}$			
9.	Two	triangles are similar				1	
	(i)	If their correspondi	ng angles ai	re equal.			
	(ii)	Their corresponding	g sides are i	n the same	e ratio		
	(iii)	Both of the above.					
	(iv)	None of these					
10.	If in	a right angled Δ ABC	$C \angle C = 90^{\circ} A$	AC = 3cm	and $BC = 4 \text{ cm}$	1	
	then	the measure of the m	nedian pass	ing throug	h point C is	1	
	(i)	2.5 cm	(ii)	3 cm			

	(iii)	3.5 cm	(iv)	4 cm	
11.	If (si	$n\theta - \cos\theta = 1$ then the va	lue of	$f(\sin^4\theta + \cos^4\theta)$ is-	1
	(i)	1	(ii)	$\frac{3}{4}$	
	(iii)	1 2	(iv)	$\frac{1}{4}$	
12.	sin2/	A = 2sinA is true when A is	equa	l to	1
	(i)	00	(ii)	300	
	(iii)	45 ⁰	(iv)	600	
13.	If 4ta	$an\theta = 3$ then $\frac{(4\sin\theta - \cos\theta)}{4\sin\theta + \cos\theta}$	is eq	ual to	1
	(i)	$\frac{2}{3}$	(ii)	$\frac{1}{3}$	
	(iii)	$\frac{1}{2}$	(iv)	$\frac{3}{4}$	
14.	The	value of (secA + tanA)(1 -	sinA)	will be-	1
	(i)	secA	(ii)	sinA	
	(iii)	cosecA	(iv)	cosA	
15.	If the	e angle of a sector of a circ	le of i	radius r cm is $ heta^0$ then the	1
	area	of sector is			T
	(i)	$\frac{\pi r^2 \theta}{360^\circ}$	(ii)	$\frac{\pi r^2 \theta}{180^{\circ}}$	
	(iii)	$\frac{2\pi r\theta}{2\pi r\theta}$	(iv)	<u>2πrθ</u>	
		360°		180°	
16.	A po	t having long neck is a com	binat	ion of	1
	(i)	a sphere and a cylinder			
	(ii)	a hemi-sphere and a cylin	der		
	(ii)	two hemi-spheres			
	(iv)	a cylinder and a cone			

17. The mean of positive odd numbers from 1 to 10 will be-

(i)	2					(ii)	3
-----	---	--	--	--	--	------	---

(iii) 4 (iv) 5

18. The median of data 13, 15, 16, 17, 19, 20 will be

(i)	30	(ii)	31
	2		2
(iii)	<u>33</u> 2	(iv)	$\frac{35}{2}$

19. If the mean of some observations is 27 and mode is 45 then 1the median is

(i)	32	(ii)	33
(iii)	34	(iv)	None of these

20. When a dice thrown the probability of getting an odd number

less than 3 is

(i)	1	(ii)	1
	6		3
(iii)	<u>1</u> 2	(iv)	0

SECTION B

1. Attempt all sections

- (a). Prove that $3 \times 5 \times 7 + 7$ is a composite number 2 (b). If $\cot\theta = \frac{7}{8}$, then find the value of $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ 2
- (c). Two cubes with a volume of 64 cm^3 each are joined end to end. Find 2 the surface area of resulting cuboid.
- (d). Find the mean of the following data.

Class	10-20	20-30	30-40	40-50	50-60	60-70	2
Interval	10 10	-0.00		10 00			
Frequeny	2	7	12	15	8	6	

1

1

1

(e).	Find the ratio in which the line segment joining the points	C
	A (-6, 10) and B (3, -8) is divided by point (-4, 6).	Z
(f).	Find the relation between X and Y such that point (X, Y) is	C
	equidistant from the points (3, 6) and (-3, 4).	Z
2.	Attempt any five of the following	
(a).	Find the zeros of the quadratic polynomial $6x^2 - 3 - 7x$ and	1
	verify the relation between zeros and coefficient.	4
(b).	The difference of squares of two numbers is 180. The square of smaller number is 8 times the larger number. Find both the numbers.	4
(c).	Prove that the tangents drawn at the ends of any diameter of a circle are parallel.	4
(d).	Prove that the angle between tangents drawn from an external point to a circle is the complement of the angle subtended at the centre by the line segment joining the tangents.	4
(e).	There are 3 red and 5 black balls in a bag. A ball is drawn randomly from the bag. What is the probability that the ball	4

drawn is (i) Red. (ii) Not Red.

(f). Median of the following data is 28.5 If sum of frequencies is60 then find the value of x and y.

Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	4
Frequency	5	х	20	15	у	5	

3. The sum of a two-digit number and the number formed by 6 reversing its digit is 66. If the difference between the digits of the number is 2 then find the number and how many such numbers are there.

Five years ago, Noori's age was three times that of Sonu. After 6 10 years, Noori's age will be twice the age of Sonu. Find the present age of Noori and Sonu?

4. The angle of depression of the top and bottom of an 8 m high building when viewed from the top of multi-storey building are 30° and 45° respectively. Find the height of multi-storey building and the distance between the two buildings.

or

The angle of elevation of the top of 10 m high building from a point P on the ground is 30°. A Flag is hoisted on the top of the building and the angle of elevation of the top of the flag from P is 45°. Find the length of the flag pole and the distance of the building from point P. ($\sqrt{3} = 1.732$)

5. A vessel in the shape of inverted cone having radius 5 cm and height 8 cm which is open at the top. It is filled with watertill the top. When some balls each of radius 0.5 cm are put in the vessel. Then 1/4th of the the water over flows. Find the numbers balls put in the vessel.

OR

A spherical glass vessel has a cylindrical neck 8 cm long and, 2 cm in diameter, the diameter of the spherical part is 8.5 cm. By measuring the amount of water it holds a child find its volume to be 345 cm³. Check whether she is correct, taking the above as the inside measurement. ($\pi = 3.14$)