Reg. No. : \qquad
Name : \qquad

SAY/IMPROVEMENT EXAMINATION - 2021

Part - III
 MATHEMATICS (SCIENCE) Cool-off time : 20 Minutes

Maximum : 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

Answer the following questions from 1 to 29 up to a maximum Score of 60.

PART - A

Answer questions from 1 to 10. Each carries 3 scores. $\quad(10 \times 3=30)$

1. If $A=\left[\begin{array}{rr}1 & 2 \\ 4 & -1\end{array}\right]$, then show that $|2 A|=4|A|$.
2. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then show that $A \cdot(\operatorname{adj} A)=|A| I$
3. Show that the function defined by $y=\cos \left(x^{2}\right)$ is a continuous function.
4. Find the interval at which $\mathrm{f}(x)=10-6 x-2 x^{2}$ is increasing or decreasing.
5. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.
6. (i) Find the vector equation of the plane

$$
\begin{equation*}
3 x+4 y-z+5=0 \tag{1}
\end{equation*}
$$

(ii) Find the equation of the plane passing through the points $(1,2,3),(0,0,-5)$ and (2, -1, - 4).
7. Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$.
8. Verify Rolle's theorem for the function

$$
\begin{equation*}
\mathrm{f}(x)=x^{2}+4 x-3, \text { in the interval }[-5,1] . \tag{3}
\end{equation*}
$$

9. Show that

$$
\left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{bc} \tag{3}\\
1 & \mathrm{~b} & \mathrm{ca} \\
1 & \mathrm{c} & \mathrm{ab}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})
$$

10. Solve the differential equation,

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{x+\mathrm{y}}{x} . \tag{3}
\end{equation*}
$$

 கேறி円ிゥறృం．

PART－A

（ii）$(1,2,3),(0,0,-5),(2,-1,-4)$ 毋 m هృమ

PART - B

Answer questions from 11 to 22. Each carries 4 scores.
11. (i) Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by $\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}-\mathrm{j}$
(ii) Find A^{2}.
12. (i) Express the matrix $A=\left[\begin{array}{cc}3 & 6 \\ -1 & 2\end{array}\right]$ as the sum of symmetric and skew symmetric matrices.
(ii) Find the values of a and b if the matrix $\left[\begin{array}{rrr}0 & 3 & a \\ b & 0 & -2 \\ 5 & 2 & 0\end{array}\right]$ is skew symmetric.
13. Prove that

$$
\begin{equation*}
\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2} . \tag{4}
\end{equation*}
$$

14. Find $\frac{d y}{d x}$
(i) $2 x+3 y=\sin x$
(ii) $y=\cos \sqrt{x}$
15. Find all points of discontinuity of f, where f is defined by

$$
\mathrm{f}(x)=\left\{\begin{array}{l}
2 x+3, \text { if } x \leq 2 \tag{4}\\
2 x-3, \text { if } x>2
\end{array}\right.
$$

16. (i) Find slope of the tangent to the curve $\mathrm{y}=x^{2}+1$ at $x=1$.
(ii) Find the equation of the normal to the curve $y=x^{2}+1$ at $(1,2)$.

PART - B

(i) $2 x+3 y=\sin x$
(ii) $\mathrm{y}=\cos \sqrt{x}$

17. Consider the vectors
$\bar{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\bar{b}=\hat{i}-\hat{j}+\hat{k}$
(i) Find $\bar{a} \times \bar{b}$.
(ii) Find the area of the parallelogram whose adjacent sides are $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$.
(iii) Find a vector perpendicular to both $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$.
18. Find the shortest distance between the skew lines
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and
$\overline{\mathrm{r}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$.
19. (i) The degree of the differential equation

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} x^{2}}+\sin \left(\frac{\mathrm{dy}}{\mathrm{~d} x}\right)+2 \mathrm{y}=0 \text { is }
$$

(A) 2
(B) 1
(C) 0
(D) Not defined
(ii) Find the general solution of the differential equation
$\sec ^{2} x \cdot \tan y d x+\sec ^{2} y \cdot \tan x d y=0$.
20. (i) If E and F are two events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})=\frac{1}{3}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5}$. Are E and F independent?

18. $\overline{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$
$\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

(A) 2
(B) 1
(C) 0

(ii) Let A and B be independent events with $\mathrm{P}(\mathrm{A})=0.3$ and $\mathrm{P}(\mathrm{B})=0.4$. Find
(a) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(b) $\mathrm{P}(\mathrm{A} / \mathrm{B})$
(c) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
21. Consider a binary operation * on the set $\mathrm{A}=\{1,2,3,4\}$ given by the following table.

$*$	1	2	3	4
1	1	1	3	2
2	1	2	3	4
3	3	3	3	2
4	2	4	2	4

(i) Compute $(2 * 3) * 4$.
(ii) Is * commutative?
(iii) Find the identity element of *.
(iv) Find inverse of the element 3, if it exists.
22. Find
(i) $\int \frac{x^{2}}{x^{2}+1} \mathrm{~d} x$.
(ii) $\int \mathrm{e}^{x}\left[\tan x+\sec ^{2} x\right] \mathrm{d} x$.
(ii) A @ృృ B @ ๔ூஸ゙.
(a) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(b) $\mathrm{P}(\mathrm{A} / \mathrm{B})$
(c) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$*$	1	2	3	4
1	1	1	3	2
2	1	2	3	4
3	3	3	3	2
4	2	4	2	4

22. (i) $\int \frac{x^{2}}{x^{2}+1} \mathrm{~d} x$.
(2)
(ii) $\int \mathrm{e}^{x}\left[\tan x+\sec ^{2} x\right] \mathrm{d} x$.

PART - C

Answer questions from 23 to 29. Each carries 6 scores.
23. Solve the system of equations using Matrix Method.

$$
\begin{array}{r}
x+2 z=2 \\
y+2 z=1 \\
4 y+9 z=3 \tag{6}
\end{array}
$$

24. (i) If $\mathrm{f}(x)=8 x^{3}$ and $\mathrm{g}(x)=x^{1 / 3}, x \in \mathrm{R}$ then find fog (x) and $\operatorname{gof}(x)$.
(ii) Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(x)=4 x+3$. Show that f is invertible. Find the inverse of f.
25. (i) If $\left[\begin{array}{ll}x & 1 \\ 2 & y\end{array}\right]=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$ then $x=$ \qquad
(ii) \quad If $x+y=\left[\begin{array}{ll}7 & 8 \\ 2 & 5\end{array}\right]$

$$
x-y=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

then find,
(a) x and y
(b) $2 x+y$
26. Solve the Linear programming problem graphically

Maximize, $\quad \mathrm{z}=3 x+2 \mathrm{y}$
Subject to, $\quad x+2 y \leq 10$

$$
\begin{array}{r}
3 x+y \leq 15 \\
x, y \geq 0 \tag{6}
\end{array}
$$

PART - C

$$
\begin{array}{r}
x+2 z=2 \\
y+2 z=1 \\
4 y+9 z=3
\end{array}
$$

25. (i)

$$
\left[\begin{array}{ll}
x & 1 \tag{1}\\
2 & \mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] \text { ๔ฺळ๐ை } x=
$$

\qquad P.
(ii) $x+y=\left[\begin{array}{ll}7 & 8 \\ 2 & 5\end{array}\right]$
$x-y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ ชฺळงณ

$$
\begin{array}{lr}
\text { Maximize, } & \mathrm{z}=3 x+2 \mathrm{y} \\
\text { Subject to, } & x+2 \mathrm{y} \leq 10 \\
& 3 x+\mathrm{y} \leq 15 \\
& x, \mathrm{y} \geq 0 \tag{6}
\end{array}
$$

27. (i) Area of the shaded region in the figure is equal to

(a) $\int y d y$
c
(b) $\int^{\mathrm{d}} \mathrm{f}(x) \mathrm{dy}$
c
d
(c) $\int_{c} f(y) d y$
(d) $\int^{\mathrm{d}} \mathrm{f}(x) \mathrm{d} x \quad$ HSS REPORTER
(ii) Find the area of the region bounded by the curve $\mathrm{y}=x^{2}, x$-axis, $x=1$ and $x=4$.
(iii) Find the area bounded by the curve $\mathrm{y}=\cos x, x$-axis, between $x=0$ and $x=\pi$.
28. (i) Which of the following function is always increasing on R ?
(a) $\sin x$
(b) $2 \cos x$
(c) x^{3}
(d) x^{2}
(ii) Show that the function f , given by
$\mathrm{f}(x)=x^{3}-3 x^{2}+4 x, x \in \mathrm{R}$.
is always increasing on R .
(iii) Find the minimum value of the function $\mathrm{f}(x)=x^{2}+1, x \in \mathrm{R}$.

(a) $\int^{d} y d y$

C
d
(b) $\int \mathrm{f}(x) \mathrm{dy}$
c
d
(c) $\int_{c} f(y) d y$

C
d
(d) $\int \mathrm{f}(x) \mathrm{d} x$

(a) $\sin x$
(b) $2 \cos x$
(c) x^{3}
(d) x^{2}

29. (i) Find $\int \frac{\sec ^{2} x}{\sqrt{\tan x}} \mathrm{~d} x$.
(ii) Find $\int \frac{1}{x^{2}+2 x+2} \mathrm{~d} x$.
(iii) Evaluate $\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} \mathrm{~d} x$.
29. (i) $\int \frac{\sec ^{2} x}{\sqrt{\tan x}} \mathrm{~d} x$ ब๐लுృக
(ii) $\int \frac{1}{x^{2}+2 x+2} \mathrm{~d} x$ ब๐๐றுகை

. HSS REPORTER

