Reg. No. :

Name :

Part – III

SAY/IMPROVEMENT EXAMINATION – 2021

Time : 2 Hours

SAY-227

MATHEMATICS (SCIENCE) Cool-off time : 20 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 20 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer the following questions from 1 to 29 up to a maximum Score of 60.

PART – A

Answer questions from 1 to 10. Each carries 3 scores. $(10 \times 3 = 30)$

1. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix}$$
, then show that $|2A| = 4|A|$. (3)

2. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then show that A.(adj A) = |A| I (3)

3. Show that the function defined by $y = cos(x^2)$ is a continuous function. (3)

4. Find the interval at which $f(x) = 10 - 6x - 2x^2$ is increasing or decreasing. (3)

5. Find the projection of the vector
$$\hat{i} + 3\hat{j} + 7\hat{k}$$
 on the vector $7\hat{i} - \hat{j} + 8\hat{k}$. (3)

6. (i) Find the vector equation of the plane

$$3x + 4y - z + 5 = 0 \tag{1}$$

(ii) Find the equation of the plane passing through the points (1, 2, 3), (0, 0, -5) and (2, -1, -4). (2)

7. Find the value of
$$\tan^{-1}(1) + \cos^{-1}\left(\frac{-1}{2}\right) + \sin^{-1}\left(\frac{-1}{2}\right)$$
. (3)

8. Verify Rolle's theorem for the function

$$f(x) = x^2 + 4x - 3$$
, in the interval [-5, 1]. (3)

9. Show that

$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a - b) (b - c) (c - a).$$
(3)

10. Solve the differential equation,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{x} \,. \tag{3}$$

1 മുതൽ 29 വരെയുള്ള ചോദ്യങ്ങൾക്ക് ഉത്തരമെഴുതുക. പരമാവധി ലഭിക്കുക 60 സ്കോർ ആയിരിക്കും.

1 മുതൽ 10 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 3 സ്കോർ വീതം. (10 × 3 = 30)

1.
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -1 \end{bmatrix}$$
ആയാൽ $|2A| = 4|A|$ എന്ന് തെളിയിക്കുക. (3)

2.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
ആയാൽ A (adj A) = |A| I എന്ന് തെളിയിക്കുക. (3)

3.
$$y = \cos(x^2)$$
 എന്ന ഫംഗ്ഷൻ കണ്ടിന്യൂവസ് ആണെന്ന് തെളിയിക്കുക. (3)

- f(x) = 10 6x 2x² എന്ന ഫംഗ്ഷൻ ഇംക്രീസിംഗോ ഡിക്രീസിംഗോ ആയ ഇന്റർവൽ കണ്ടുപിടിക്കുക. (3)
- 5. $\hat{i} + 3\hat{j} + 7\hat{k}$ എന്ന വെക്ടറിന്റെ $7\hat{i} \hat{j} + 8\hat{k}$ എന്ന വെക്ടറിലേയ്ക്കുള്ള പ്രൊജക്ഷൻ കണ്ടുപിടിക്കുക. (3)

6. (i)
$$3x + 4y - z + 5 = 0$$
 എന്ന തലത്തിന്റെ (plane) വെക്ടർ ഇക്വേഷൻ എഴുതുക. (1)

 (ii) (1, 2, 3), (0, 0, -5), (2, -1, -4) എന്നീ മൂന്നു ബിന്ദുക്കളിലൂടെ കടന്നു പോകുന്ന തലത്തിന്റെ (plane) ഇക്വേഷൻ കണ്ടുപിടിക്കുക. (2)

7.
$$\tan^{-1}(1) + \cos^{-1}\left(\frac{-1}{2}\right) + \sin^{-1}\left(\frac{-1}{2}\right)$$
ന്റെ വില കാണുക. (3)

 8. f(x) = x² + 4x - 3 എന്ന ഫംഗ്ഷൻ, [-5, 1] എന്ന ഇന്റർവലിൽ റോൾസ് സിദ്ധാന്തം പാലിക്കുന്നുണ്ടോ എന്ന് പരിശോധിക്കുക. (3)

9.
$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a - b) (b - c) (c - a)$$
 എന്ന് തെളിയിക്കുക. (3)

10.
$$\frac{dy}{dx} = \frac{x+y}{x}$$
 എന്ന് ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ പരിഹാരം കാണുക. (3)

SAY-227

3 P.T.O.

PART – B

	Answer questions from 11 to 22. Each carries 4 scores. (1				
11.	(i)	Construct a 2 × 2 matrix A = $[a_{ij}]$ whose elements are given by $a_{ij} = 2i - j$	(2)		
	(ii)	Find A^2 .	(2)		

12. (i) Express the matrix $A = \begin{bmatrix} 3 & 6 \\ -1 & 2 \end{bmatrix}$ as the sum of symmetric and skew symmetric matrices. (2)

(ii) Find the values of a and b if the matrix
$$\begin{bmatrix} 0 & 3 & a \\ b & 0 & -2 \\ 5 & 2 & 0 \end{bmatrix}$$
 is skew symmetric. (2)

13. Prove that

$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}.$$
(4)

- 14. Find $\frac{dy}{dx}$
 - $(i) \quad 2x + 3y = \sin x \tag{2}$

(ii)
$$y = \cos \sqrt{x}$$
 (2)

15. Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} 2x+3, & \text{if } x \le 2\\ 2x-3, & \text{if } x > 2 \end{cases}$$
(4)

- 16. (i) Find slope of the tangent to the curve $y = x^2 + 1$ at x = 1. (1)
 - (ii) Find the equation of the normal to the curve $y = x^2 + 1$ at (1, 2). (3)

PART – B

	11 മുതൽ 22 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 4 സ്കോർ വീതം.	(12 × 4 = 48)
11.	(i) $a_{ij}=2i-j$ ആക്കുന്ന തരത്തിൽ A = $[a_{ij}]$ എന്ന 2×2 മെട്രിക്സ് നിർമ്മിക്	കുക. (2)
	(ii) A ² കണ്ടുപിടിക്കുക.	(2)
12.	(i) $A = \begin{bmatrix} 3 & 6 \\ -1 & 2 \end{bmatrix}$ എന്ന മാട്രിക്സിനെ ഒരു സിമട്രിക് മാട്രിക്സിന്റെയും ന് മാട്രിക്സിന്റെയും തുകയായി എഴുതുക.(ii) $\begin{bmatrix} 0 & 3 & a \\ b & 0 & -2 \\ 5 & 2 & 0 \end{bmatrix}$ എന്നത് ഒരു സ്ക്ര്യസിമട്രിക് മാട്രിക്സ് ആയാൽ a, b ഇവയും	(2)
	∟ 5 2 0 ച കണ്ടുപിടിക്കുക.	(2)
13.	$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$ എന്നു തെളിയിക്കുക.	(4)
14.	<u>dy</u> കണ്ടു പിടിക്കുക	
	(i) $2x + 3y = \sin x$	(2)
	(ii) $y = \cos \sqrt{x}$	(2)
15.	$f(x) = \begin{cases} 2x + 3, & \text{if } x \leq 2 \\ 2x - 3, & \text{if } x > 2 \end{cases}$ എന്ന ഫംഗ്ഷൻ കണ്ടിന്യുവസ് അല്ലാത്ത ത കണ്ടുപിടിക്കുക.	പോയിന്റ്സ് (4)

16. (i) $y = x^2 + 1$ എന്ന വക്രത്തിന്റെ x = 1 ലുള്ള തൊടുവരയുടെ (Tangent) ചരിവ് കണ്ടുപിടിക്കുക. (1)

(ii) y = x² + 1 എന്ന വക്രത്തിന്റെ (1, 2) എന്ന ബിന്ദുവിലുള്ള നോർമലിന്റെ സമവാകൃം കണ്ടുപിടിക്കുക. (3)

SAY-227

5 P.T.O.

17. Consider the vectors

$$\overline{a} = 3\hat{i} + \hat{j} + 4\hat{k} \text{ and } \overline{b} = \hat{i} - \hat{j} + \hat{k}$$
(i) Find $\overline{a} \times \overline{b}$.
(2)

- (ii) Find the area of the parallelogram whose adjacent sides are \overline{a} and \overline{b} . (1)
- (iii) Find a vector perpendicular to both \overline{a} and \overline{b} . (1)
- 18. Find the shortest distance between the skew lines

$$\bar{\mathbf{r}} = \left(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right) + \lambda \left(\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right) \text{ and}$$
$$\bar{\mathbf{r}} = \left(4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 6\hat{\mathbf{k}}\right) + \mu \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}\right). \tag{4}$$

19. (i) The degree of the differential equation $\frac{d^2y}{dx^2} + \sin\left(\frac{dy}{dx}\right) + 2y = 0$ is
(A) 2
(B) 1
(C) 0
(D) Not defined
(D) Not defined
(1)
(ii) Find the general solution of the differential equation

$$\sec^2 x \cdot \tan y \, dx + \sec^2 y \cdot \tan x \, dy = 0. \tag{3}$$

20. (i) If E and F are two events with $P(E) = \frac{3}{5}$, $P(F) = \frac{1}{3}$ and $P(E \cap F) = \frac{1}{5}$. Are E and F independent ? (1)

 $17. \quad \overline{a} = 3\hat{i} + \hat{j} + 4\hat{k}, \ \overline{b} = \hat{i} - \hat{j} + \hat{k}$ എന്നി വെക്ടറുകൾ പരിഗണിക്കുക.

$$(i)$$
 $\overline{a} \times \overline{b}$ കണ്ടുപിടിക്കുക (2)

- (ii) ā യും b യും അടുത്തടുത്ത വശങ്ങളായി വരുന്ന സാമാന്തരികത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (1)
- (iii) ā യ്ക്കും b യ്ക്കും ലംബമായ വെക്ടർ കണ്ടുപിടിക്കുക. (1)

18.
$$\overline{\mathbf{r}} = \left(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}\right) + \lambda \left(\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}\right)$$

 $\overline{\mathbf{r}} = \left(4\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 6\hat{\mathbf{k}}\right) + \mu \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}\right)$

എന്നീ സ്ക്യൂ വരകൾ തമ്മിലുള്ള ഏറ്റവും ചെറിയ അകലം കാണുക. (4)

19. (i)
$$\frac{d^2y}{dx^2} + \sin\left(\frac{dy}{dx}\right) + 2y = 0$$
 എന്ന ഡിഫറൻഷ്യൽ സമവാകൃത്തിന്റെ ഡിഗ്രി ആണ്.
(A) 2
(B) 1
(C) 0
(D) ഡിഫൈൻഡ് അല്ല (1)
(ii) $\sec^2x \cdot \tan y \, dx + \sec^2 y \cdot \tan x \, dy = 0$ എന്ന ഡിഫറൻഷ്യൽ സമവാകൃത്തിന്റെ

20. (i)
$$P(E) = \frac{3}{5}, P(F) = \frac{1}{3}, P(E \cap F) = \frac{1}{5}$$
 ഉം ആയരണ്ട് ഇവന്റുകൾ ആണ് E യും F ഉം.

എങ്കിൽ E യും F ഉം ഇൻഡിചെൻഡന്റ് ആണോ ? (1)

7 P.T.O.

- (ii) Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find
 - (a) $P(A \cap B)$ (1)
 - (b) P(A/B) (1)

(c)
$$P(A \cup B)$$
 (1)

21. Consider a binary operation * on the set $A = \{1, 2, 3, 4\}$ given by the following table.

*	1	2	3	4
1	1	1	3	2
2	1	2	3	4
3	3	3	3	2
4	2	4	2	4

(i) Compute
$$(2 * 3) * 4$$
. (1)

- (ii) Is * commutative ? (1)
- (iii) Find the identity element of *. (1)
- (iv) Find inverse of the element 3, if it exists. (1)

22. Find

(i) $\int \frac{x^2}{x^2+1} \, \mathrm{d}x.$ (2)

(ii)
$$\int e^x [\tan x + \sec^2 x] dx.$$
 (2)

- (ii) A യും B യും രണ്ട് ഇൻഡിപെൻഡന്റ് ഇവന്റുകൾ ആണ്. P(A) = 0.3 ഉം P(B) = 0.4 ഉം ആണ്.
 - (a) $P(A \cap B)$ (1)
 - (b) P(A/B) (1)
 - (c) $P(A \cup B)$ (1)
- 21. A = {1, 2, 3, 4} എന്ന ഗണത്തിൽ * എന്ന ബൈനറി ഓപ്പറേഷൻ താഴെ തന്നിരിക്കുന്ന പട്ടിക പ്രകാരം നിർവ്വചിച്ചിരിക്കുന്നു.

				0	
*	1	2	3	4	
1	1	1	3	2	
2	1	2	3	4	
3	3	3	3	2	
4	2	4	2 <mark>45</mark>	s Æ ep	ORTER

(1)
(

- (ii) *കമ്മ്യൂട്ടേറ്റീവ് ആണോ ? (1)
- (iii) * ന്റെ ഐഡന്റിറ്റി എലമെന്റ് കണ്ടുപിടിക്കുക. (1)
- (iv) 3 എന്ന എലമെന്റിന് ഇൻവേഴ്സ് ഉണ്ടെങ്കിൽ കണ്ടുപിടിക്കുക. (1)

22. (i)
$$\int \frac{x^2}{x^2+1} dx.$$
 (2)

(ii)
$$\int e^x [\tan x + \sec^2 x] dx.$$

ഇവ കണ്ടുപിടിക്കുക. (2)

SAY-227

P.T.O.

9

PART – C

	Answer questions from 23 to 29. Each carries 6 scores.	$(7 \times 6 = 42)$
23.	Solve the system of equations using Matrix Method.	

$$x + 2z = 2$$

 $y + 2z = 1$
 $4y + 9z = 3$
(6)

24. (i) If
$$f(x) = 8x^3$$
 and $g(x) = x^{1/3}$, $x \in \mathbb{R}$ then find fog (x) and gof (x). (3)

(ii) Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f. (3)

25. (i) If
$$\begin{bmatrix} x & 1 \\ 2 & y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
 then $x =$ ____. (1)
(ii) If $x + y = \begin{bmatrix} 7 & 8 \\ 2 & 5 \end{bmatrix}$ $\xrightarrow{\text{HSS REPORTER}}$
 $x - y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

then find,

(a) *x* and y (3)

(b)
$$2x + y$$
 (2)

26. Solve the Linear programming problem graphically

Subject to,	$x + 2y \le 10$	
	$3x + y \le 15$	(6)
	$x, y \ge 0$	(6)

SAY-227

10

PART – C						
	23 മുതൽ 29 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 6 സ്കോർ വീതം.	$(7 \times 6 = 42)$				
23.	മാട്രിക്സ് ഉപയോഗിച്ച്					
	x + 2z = 2					
	y + 2z = 1					
	4y + 9z = 3					

എന്ന സമവാകൃങ്ങൾക്ക് പരിഹാരം കാണുക.

(6)

24. (i) $f(x) = 8x^3$, $g(x) = x^{1/3}$, $x \in \mathbb{R}$, ആയാൽ fog (x), gof (x) ഇവ കണ്ടുപിടിക്കുക. (3)

 (ii) f : R → R, f(x) = 4x + 3 പരിഗണിക്കുക. f ഇൻവേർട്ടിബിൾ ആണ് എന്ന് തെളിയിക്കുക. f ന്റെ ഇൻവേഴ്സ് കണ്ടുപിടിക്കുക.
 (3)

25. (i)
$$\begin{bmatrix} x & 1 \\ 2 & y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$
 ആയാൽ $x = S$ REPORTER (1)
(ii) $x + y = \begin{bmatrix} 7 & 8 \\ 2 & 5 \end{bmatrix}$
 $x - y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ ആയാൽ
(a) $x \ge y \ge c$ കണ്ടുപിടിക്കുക (3)
(b) $2x + y$ കണ്ടുപിടിക്കുക (2)

26. ലീനിയർ പ്രോഗ്രാമിംഗ് പ്രോബ്ലത്തിന് ഗ്രാഫ് ഉപയോഗിച്ച് പരിഹാരം കാണുക.

		11	Р.Т.О.
	$x, y \ge 0$		(6)
	$3x + y \le 15$		
Subject to,	$x + 2y \le 10$		
Maximize,	z = 3x + 2y		

27. (i) Area of the shaded region in the figure is equal to

(ii) Find the area of the region bounded by the curve $y = x^2$, x-axis, x = 1 and x = 4. (2)

28. (i) Which of the following function is always increasing on R?

- (a) $\sin x$
- (b) $2 \cos x$
- (c) x^3 (d) x^2 (1)
- (ii) Show that the function f, given by

$$f(x) = x^3 - 3x^2 + 4x, x \in \mathbb{R}.$$

is always increasing on R. (3)

(iii) Find the minimum value of the function $f(x) = x^2 + 1, x \in \mathbb{R}$. (2)

27. (i) ചിത്രത്തിലെ ഷേഡ് ചെയ്തിരിക്കുന്ന ഭാഗത്തിന്റെ പരപ്പളവ് ചുവടെ തന്നിരിക്കുന്നതിൽ ഏതി നോടാണ് തുല്യമായിരിക്കുന്നത്.

(ii)
$$y = x^2$$
 എന്ന വക്രവും, x-അക്ഷം, $x = 1, x = 4$ എന്നിവയും ചെർന്നുവരുന്ന
ഭാഗത്തിന്റെ പരപ്പളവ് കാണുക. (2)

- (iii) x = 0 യ്ക്കു $x = \pi$ യ്ക്കും ഇടയിൽ y = cos x എന്ന വക്രവും x-അക്ഷവും ചേർന്നു വരുന്ന ഭാഗത്തിന്റെ പരപ്പളവ് കാണുക. (3)
- 28. (i) ചുവടെ കൊടുത്തിരിക്കുന്നതിൽ എല്ലായ്പോഴും R-ൽ ഇൻക്രീസിംഗ് ആയ ഫംഗ്ഷൻ ഏത്?
 - (a) $\sin x$
 - (b) $2\cos x$
 - (c) x^3
 - (d) x^2 (1)
 - (ii) f(x) = x³ 3x² + 4x, x ∈ R എന്ന ഫംഗ്ഷൻ എല്ലായ്പോഴും R-ൽ ഇൻക്രീസിംഗ് ആണെന്നു തെളിയിക്കുക. (3)
 - (iii) $f(x) = x^2 + 1, x \in \mathbb{R}$ എന്ന ഫംഗ്ഷന്റെ ഏറ്റവം കുറഞ്ഞ വില കണ്ടുപിടിക്കുക. (2)

SAY-227

P.T.O.

13

29. (i) Find
$$\int \frac{\sec^2 x}{\sqrt{\tan x}} dx.$$
 (2)

(ii) Find
$$\int \frac{1}{x^2 + 2x + 2} \, \mathrm{d}x.$$
 (2)

(iii) Evaluate
$$\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx.$$
 (2)

29. (i)
$$\int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx$$
 കാണുക (2)

(ii)
$$\int \frac{1}{x^2 + 2x + 2} dx$$
 കാണുക (2)

(iii)
$$\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx$$
 ന്റെ വില കണ്ടുപിടിക്കുക. (2)

