Q. no.	Expected solutions	mar
	Section-A	
1	(b)2	1
2	(c) rational number	1
3	(c) $\frac{x^2}{2} - \frac{x}{2} - 6$	1
4	(c) no real roots	1
5	(c)4	1
6	(a) (0,0)	1
7	(a) 50°	1
8	(a) 50°	1
9	Point of contact	1
10	$\frac{\sqrt{3}}{2}$	1
11	False	1
12	cos90°= 0	1
13	(d) $\frac{p}{720} \times 2\pi r^2$	1
14	36.67 <i>cm</i>	1
15	(a) 3:7	1
16	(b) 17.5	1
17	(b)21	1
18	(c) 9	1
19	(c) Assertion(A) is true but Reason(R) is false.	1
20	(a)Both Assertion(A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion(A).	1
	Section B	
21.	The given system of equation is	
	kx+3y-(k-3)=0(i)	
	12x+ky-k=0(ii)	
	On comparing with $ax + by + c = 0$, we get	
	$a_1 = k, b_1 = 3$ and $c_1 = -(k-3)$ [from (i)]	
	$a_2 = 12$, $b_2 = k$ and $c_2 = -k$ [from (ii)]	
	For no solution,	

$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	
For no solution, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\Rightarrow \frac{k}{12} = \frac{3}{k} \neq \frac{-(k-3)}{-k}$	1/2
Taking first two parts, we get $\frac{k}{12} = \frac{3}{k}$	
$\Rightarrow k^2 = 36$ $\Rightarrow k = \pm 6$ 12 k $\Rightarrow k = \pm 6$	1/2
Taking last two parts, we get $\frac{3}{k} \neq \frac{-(k-3)}{-k}$	
$\Rightarrow 3k \neq k(k-3)$ $\Rightarrow 3k - k(k-3) \neq 0$	
$\Rightarrow k(3 - k + 3) \neq 0$ $\Rightarrow k(6 - k) \neq 0$ $\Rightarrow k \neq 0 \text{ and } k \neq 6$	1/2
Hence, required value of k for which the given pair of linear equations have no solution is -6.	1/2

OR 21	By Elimination method:	1/2
	Equations are $3x + 4y = 10$	1/2
	and 2x - 2y = 2 Multiplying equation (ii) by 2 and adding to equation (i) we	
	Multiplying equation (ii) by 2 and adding to equation (i), we $3x + 4y = 10$	
	4x - 4y = 10 $4x - 4y = 4$	1/2
	7x = 14	
	\Rightarrow $x = 2$	1/2
	Now, putting the value of x in equation (i) , we get	
	$3(2) + 4y = 10 \Rightarrow 6 + 4y = 10$	
	$\Rightarrow \qquad 4y = 4 \qquad \Rightarrow [y = 1]$	1/2
22	A C B	
	OA . OB = OC . OD (Given) $So_{,\overline{OC}}^{,\overline{OA}} = \frac{OD}{OB}(1)$	1/2
	Also, we have \angle AOD = \angle COB (Vertically opposite angles)(2)	1/2
	Therefore, from (1) and (2), \triangle AOD \sim \triangle COB (SAS similarity criterion)	1/2
	So, $\angle A = \angle C$ and $\angle D = \angle B$ (Corresponding angles of similar triangles)	1/2
23	Let O be the centre of the concentric circle of radii 5 cm and 3 cm respectively. Let AB be a chord of the larger circle touching the smaller circle at P.	

	Then	1/2
	AP=PB and OP⊥AB	
	Applying Pythagoras theorem in $\triangle OPA$, we have $OA^2 = OP^2 + AP^2$	1/2
	$\Rightarrow 25 = 9 + AP^2$	1/2
	\Rightarrow AP ² =16 \Rightarrow AP=4 cm	
	∴AB=2AP=8 cm	1/2
24.	$\sin\theta + \cos\theta = \sqrt{3}$	
	$\Rightarrow (\sin\theta + \cos\theta)^2 = 3$ $\Rightarrow \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$	1/2
	\Rightarrow 1+2sin θ cos θ =3	
	$\Rightarrow 2\sin\theta\cos\theta=2$	1/2
	⇒sinθcosθ=1	

		<u> </u>
	$\Rightarrow \sin\theta\cos\theta = \sin^2\theta + \cos^2\theta$	1 /2
	. 2 0 2 0	1/2
	$\Rightarrow 1 = \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}$	
	$\sin \theta \cos \theta$	
	$\Rightarrow \tan\theta + \cot\theta = 1$	1/2
OR 24	$5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ$	
	$\sin^2 30^\circ + \cos^2 30^\circ$	
	$= \frac{5 \times \left(\frac{1}{2}\right)^2 + 4 \times \left(\frac{2}{\sqrt{3}}\right)^2 - 1}{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$	1
	$=\frac{\frac{5}{4}+\frac{16}{3}-1}{\frac{1}{4}+\frac{3}{4}}=\frac{67}{12}.$	1
25.	Total area cleaned by 2 wipers	
	=2× area cleaned by 1 wiper	1/2
	=2× area of sector with 115°	
	$=2\times \frac{\theta}{360^{\circ}}\times\pi r^{2}$	1/2
	$=2\times\frac{115^{\circ}}{360^{\circ}}\times\frac{22}{7}\times25^{2}$	1/2
	Therefore area cleaned by wipers = $\frac{158125}{126}$ = 1254.96 cm ²	1/2
	Section C	
26.	Let us assume that	

$3-2\sqrt{5}$ is rational.	1/2
Hence it can be written in the form	
$\frac{a}{b}$ where a and b are co-prime and b $\neq 0$ Hence $3-2\sqrt{5} = \frac{a}{b}$	1/2
27	1/2
$\Rightarrow 2\sqrt{5} = 3 - \frac{a}{b} = \frac{3b - a}{b}$	1/2
$\Rightarrow \sqrt{5} = \frac{3b - a}{2b}$	1/2
where $\sqrt{5}$ is irrational and $\frac{3b-a}{2b}$ is rational.	
because irrational number≠ rational number Therefore the above is a contradiction. So our assumption is wrong.	1/2
Hence $3-2\sqrt{5}$ is irrational.	1/2
Since α and β are the zeroes of the polynomial $f(x)=5x^2-7x+1$	
$\therefore \alpha + \beta = -\left(\frac{-7}{5}\right) = \frac{7}{5} \text{ and } \alpha\beta = \frac{1}{5}$	1
$Now_{\beta}^{\alpha} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} =$	1
	Hence it can be written in the form $\frac{a}{b} \text{where a and b are co-prime and b} \neq 0$ $\text{Hence } 3-2\sqrt{5} = \frac{a}{b}$ $\Rightarrow 2\sqrt{5} = 3 - \frac{a}{b} = \frac{3b-a}{b}$ $\Rightarrow \sqrt{5} = \frac{3b-a}{2b}$ where $\sqrt{5}$ is irrational and $\frac{3b-a}{2b}$ is rational. because irrational number \neq rational number. Therefore the above is a contradiction. So our assumption is wrong. Hence $3-2\sqrt{5}$ is irrational. Since α and β are the zeroes of the polynomial $f(x)=5x^2-7x+1$ $\therefore \alpha+\beta=-\left(\frac{-7}{5}\right)=\frac{7}{5}$ and $\alpha\beta=\frac{1}{5}$

		$= \frac{\left(\frac{7}{5}\right)^2 - 2 \times \frac{1}{5}}{\frac{1}{5}}$	
		$= \frac{\left(\frac{7}{5}\right)^2 - 2 \times \frac{1}{5}}{\frac{1}{5}}$ $= \frac{\frac{49}{25} \cdot \frac{2}{5}}{\frac{1}{5}} = \frac{\frac{49 - 10}{25}}{\frac{1}{5}} = \frac{39}{25} \times 5 = \frac{39}{5}$	1
28	Given equations	are	
	x+3y=6		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	1/2
	$y=\frac{6-x}{3}$ 2	0	
	and		
	2x-3y=12		
	x 0	3	1 /0
	y= -4	-2	1/2
	$\frac{2x-12}{2}$	_	
	3		
	Dlot the area into A	(0, 2), D(6, 0)	
	Plot the points A $P(0, -4)$ and $Q(3)$		
		the points to form the lines AB and PQ as	
	shown in Fig.	r	
	_		
		there is a point B (6, 0) common to both the	
		So, the solution of the pair of linear $x = 0$, i.e. the given pair of equations	
	equations is $x = 6$ is consistent.	6 and $y = 0$, i.e., the given pair of equations	1
	15 COHSISICHT.		

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
OR 28	Let the numbers be xand y	
	According to given condition, x=3y(i)	1/2
	x-y=26(ii)	1/2
	On solving (i) and (ii) we get,	
	x=3y [From (i)] Substituting value of x in (ii)	1/2
	3y-y=26	1, 2
	2y=26	
	y=13	1/2
	Now, x=3y	
	$\begin{array}{c} x=3(13) \\ \Rightarrow x=39 \end{array}$	1/2
	∴y=13,x=39	
	∴ The required numbers are 13 and 39.	1/2
29	Suppose ∠PTQ=θ Since,"The lengths of tangents drawn from an external point to a circle are equa So, ΔTPQ is an isosceles triangle.	1/2
	$\therefore \angle TPQ = \angle TQP = \frac{1}{2}(180^{\circ} - \theta) = 90^{\circ} - \frac{\theta}{2}$	1/2

	$T \longrightarrow Q$	1/2
	Also, The tangents at any point of a circle is perpendicular to the radius through the point of contact" ∠OPT=90°	1/2
	$\therefore \angle OPQ = \angle OPT - \angle TPQ = 90^{\circ} - (90^{\circ} - \frac{\theta}{2})$ $= \frac{\theta}{2} = \frac{1}{2} \angle PTQ$	1/2
	Hence ∠PTQ=2∠OPQ	1/2
30	LHS = $(\cos \theta - \cot \theta)^2$ = $\left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2 = \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2$	1
	$=\frac{(1-\cos\theta)^2}{\sin^2\theta}=\frac{(1-\cos\theta)^2}{1-\cos^2\theta}$	1
	$=\frac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}=\frac{1-\cos\theta}{1+\cos\theta}=RHS.$	1
OR 30	Consider the length of the ladder = 15 m (Hypotenuse)	
	1	

From the figure Angle between the ladder and the wall ∠BCA	
Angle between ladder and the ground ∠CAB We know that	1/2
BC is the height of the wall $\sin 30^{\circ} = BC/15$	1
1/2 = BC/15	1/2
So we get	
BC = 15/2 BC = 7.5 m	1/2
Therefore, the height of the wall is 7.5 m.	
We use the basic formula of probability to so Probability = $\frac{\text{Total number of favorable of Number of possible outoff}}{\text{Number of possible outoff}}$ When a coin is tossed three times, the total poare:	omes omes
i) Sweta will lose her entry fee if she throw Therefore, the probability that she loses her	

	P(TTT)=1/8	1
	 ii) Sweta will receive double the entry fee if she throws three heads. Therefore, the probability that she gets double the entry fee = P(HHH)= 1/8 	1
	(iii) Sweta will get her entry fee back if one or two heads show.	
	Therefore, the probability that she gets her entry fee = $P\{HTH,THT,HHT,TTH,HTT,THH\} = \frac{6}{8} = \frac{3}{4}$	1
	SECTION D	
32.	Step 1: Find time taken for the journey Let the speed of the train be $x \ kmph$ Time taken for the journey $= \frac{480}{x}$ Given speed is decreased by $8 \ kmph$ Hence the new speed of train $= (x-8) \ kmph$ Time taken for the journey $= \frac{480}{(x-8)}$ Step 2: Find the speed of the train Now according to question $\frac{480}{(x-8)} - \frac{480}{x} = 3$ $\Rightarrow \frac{480(x-x+8)}{x(x-8)} = 3$ $\Rightarrow \frac{480}{x} \times 8 = x^2 - 8x$	1 1
	\Rightarrow $1280 = x^2 - 8x$ $x^2 - 8x - 1280 = 0$ On solving we get $x = 40$ Hence, the speed of train is $40 \ kmph$.	1
OR 32	Let the first integer number = x Next consecutive positive integer will = x+1	1

	Product of both integers = $x \times (x+1) = 306$	1/2
	$x^{2}+x=306$ $\Rightarrow x^{2}+x-306=0$	1/2
	$\Rightarrow x^{2}+18x-17x-306=0$ \(\Rightarrow x(x+18)-17(x+18)=0\) \(\Rightarrow (x+18)(x-17)=0\)	1
	Either x+18=0 or x-17=0 \Rightarrow x=-18 or x=17	1
	Since integers are positive x can only be 17 $\therefore x+1=17+1=18$ Therefore, two consecutive positive integers will be 17 and 18.	1
33.	Solution:	
	Given: In ΔABC, DE BC	1/2
	D E	
	B	1/2
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$	1/2

Construction: Draw EM⊥AB and DN⊥AC. Join B to E and C to D	1/2
Proof: In ΔADE and ΔBDE	
$\frac{\text{Area of}\Delta ADE}{\text{Area of }\Delta BDE} = \frac{\frac{1}{2} \times AD \times EM}{\frac{1}{2} \times DB \times EM} = \frac{AD}{DB} (i)$	1/2
In $\triangle ADE$ and $\triangle CDE$ $\frac{Area \text{ of } \triangle ADE}{Area \text{ of } \triangle CDE} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times EC \times DN} = \frac{AE}{EC} \qquad(ii)$	1/2
Since, DE BC [Given]	
$\therefore \text{ ar}(\Delta \text{BDE}) = \text{ar}(\Delta \text{CDE}) (iii)$ [Δs on the same base and between the same parallel sides are equal in area]	1

	From eq. (i), (ii) and (iii)	1
	$: \frac{AD}{DB} = \frac{AE}{EC}$ Hence proved.	
34.	4 m 8 4 m	
	Radius of cylinder = 2 m, height = 2.1 m and slant height of conical top = 2.8 m	1
	Curved surface area of cylindrical portion= $2\pi rh$ = $2\pi \times 2 \times 2.1$ = $8.4\pi m^2$	1
	Curved surface area of conical portion= π rl = $\pi \times 2 \times 2.8$ = 5.6π m ²	1
	Total curved surface area= $8.4\pi+5.6\pi=14\times22/7=44\text{m}^2$	1
	Cost of canvas = Rate × Surface area=500×44=Rs.22000	1

OR 34	2 cm 8 cm	
	Radius of cylinder = 1 cm, height of cylinder = 8 cm, radius of sphere = 8.5/2cm	1/2
	Volume of cylinder= π r ² h= π ×(1) ² ×8=8 π cm ³	$1\frac{1}{2}$
	Volume of sphere = $\frac{4}{3}\pi r^3$ = $\frac{4}{3} \times \pi \times (8.5/2)^3 = 614125/6000 \ \pi \text{cm}^3$	$1\frac{1}{2}$
	Total volume = Volume of sphere + Volume of cylinder $= (\frac{614125}{6000} + 8)\pi$ $= (\frac{614125 + 48000}{6000})\pi$ $= 346.51 \text{ cm}^{3}$	1^1_2

35.

The cumulative frequencies with their respective class

intervals are as follows.

Weight (in	Frequency	Cumulative
kg)	(f)	frequency
40 – 45	2	2
40 – 43	2	2
45-50	3	5
50-55	8	13
55-60	6	19
60-65	6	25
65-70	3	28
70-75	2	30
Total(n)	30	

Cumulative frequency just greater than $\frac{n}{2}$ (i. e. $\frac{30}{2} = 15$) is 19,

belonging to class interval 55 - 60.

Median class = 55 - 60

.....

.

Lower limit (l) of median class = 55

Frequency (f) of median class = 6

1

1

	Cumulative frequency (cf) of class preceding the median class = 13	1
	Class size (h) = 5 Median = $l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$	1
	=55 + $\frac{15-13}{6}$ × 5 =55 + $\frac{10}{6}$ = 56.67 Therefore, median weight is 56.67 kg.	1
	SECTION E	
36.	(i) $a = First term = 51 secs$ reduce time daily by 2secs d = -2 last term $a_n = 31$ a+(n-1)d = 31 31 = 51 + (n-1)(-2) 10 = n - 1 n = 11 11 Terms	
	the minimum number of days he needs to practice till his goal is achieved= 11 51, 49, 47, 45, 43, 41, 39, 37, 35, 33, 31	1
	(ii) Because Veer need to practice. Because of his practice, The timing required to cover the distance can be reduced.	
	The given situation can be expressed in an arithmetic progression (AP), where the terms decrease by 2 seconds each day. Thus, the AP will be 51, 49, 47	1
	(iii)	

$a_n=2n+3$	
$a_1 = 2 \times 1 + 3 = 5$	
$a_2=2\times 2 + 3 = 7$	
$a_3=2\times 3 + 3 = 9$	
$a_4=2\times 4 + 3 = 11$	1
A.P. = 5,7,9,11 d = 7-5=2	1
OR (iii)	
Since $2x,x+10,3x+2$ are three consecutive terms are in AP. $\therefore (x+10) - 2x = (3x+2) - (x+10)$ $\Rightarrow 10-x=2x-8$	1
$\Rightarrow 18 = 3x$ $\Rightarrow x = 6$	1
(i)) Revti' position is at (7,9) Sheela's position is at (4,5)	1
(ii)) $RJ = \sqrt{(7-7)^2 + (1-9)^2} = \sqrt{(0)^2 + (-8)^2} = \sqrt{64} = 8$ units	1
(iii)) Here SP= PQ =QM	
	a ₁ =2× 1 + 3 = 5 a ₂ =2× 2 + 3 = 7 a ₃ =2× 3 + 3 = 9 a ₄ =2× 4 + 3 = 11

$\frac{200}{BC} = \frac{1}{2} \implies BC = 400 \text{ m}$ Perimeter of $\triangle ABC = AB + BC + AC$ $= 200\sqrt{3} + 400 + 200 = 600 + 200\sqrt{3}$ $= 200(3 + \sqrt{3}) \text{ m}$	$\frac{AC}{BC} = \cos 60^{\circ} \Rightarrow$	1
$= 200\sqrt{3} + 400 + 200 = 600 + 200\sqrt{3}$	$\frac{200}{BC} = \frac{1}{2} \implies BC = 400 \text{ m}$	
	$= 200\sqrt{3} + 400 + 200 = 600 + 200\sqrt{3}$	1