Qn. No.	Sub Qns	Answer Key/Value Points	Scor e	Total			
	Answer any 4 questions from 1 to 5. Each carries 1 score						
1.		(b) 3	1	1			
2.		Dry cell/Mercury cell (Button cell)	1	1			
3.		Linkage isomerism	1	1			
4.		(d) SOCl ₂	1	1			
5.		Vitamin C	1	1			
		Answer any 8 questions from 6 to 15. Each carries 2 scores	T	Γ			
6.	(i)	van't Hoff factor (i) is defined as:					
		i = Normal molar mass Abnormal molar mass OR, i = Observed colligative property Calculated colligative property OR, i = Total number of moles of particles after association/dissociation Number of moles of particles before association/dissociation	1	2			
	(ii)	i = 2	1				
7.	(i)	Galvanic cells are devices that convert chemical energy of some redox reactions to	1				
	(ii)	electrical energy. OR , these are cells which produce electricity by some chemical reactions. Zn(s) Zn ²⁺ (aq) Cu ²⁺ (aq) Cu(s) OR , Zn Zn ²⁺ Cu ²⁺ Cu	1	2			
8.		These are reactions which appear to follow higher order but actually follow first order kinetics. E.g.: Hydrolysis of ester OR , Inversion of cane sugar OR , Any hydrolysis reaction	1	2			
9.	(i) (ii)	The factors affecting rate of a chemical reaction are nature of the reactants, concentration of the reactants, temperature, pressure, catalyst and radiation or light. [Any 2 required] r = k[NH ₃] ⁰ OR, r = k	1	2			
10.	(i) (ii)	Finkelstein reaction: Alkyl chlorides or bromides when treated with Nal in dry acetone, alkyl iodides are formed. This reaction is known as Finkelstein reaction. R-X + Nal \longrightarrow R-I + NaX (where X = Cl or Br) Fittig Reaction: Aryl halides when treated with sodium in dry ether, we get diaryls (diphenyls). OR, Chlorobenzene when treated with sodium in dry ether, we get diphenyl. $2 \longrightarrow X + Na \xrightarrow{\text{Ether}} + 2NaX$	1 1	2			

11.		S _N 1 Reaction	S _N 2 Reaction			
		Proceeds in 2 steps	Proceeds in a single step			
		An intermediate (carbocation) is formed	No intermediate is formed			
		Order of the reaction is 1	Order is 2			
		For optically active compounds, the	For optically active compounds, the	2 x 1	2	
		reaction proceeds through retention of	reaction proceeds through inversion of	= 2		
		configuration.	configuration.			
		The order of reactivity of alkyl halide is $3^0 > 2^0 > 1^0$	The order of reactivity of alkyl halide is $1^0 > 2^0 > 3^0$			
			[Any 2 required]			
12.		Chloroform is stored in closed dark coloured prevent its oxidation to the poisonous gas c OR , the equation: $2CHCl_3 + O_2 \xrightarrow{light} 2COlored$	arbonyl chloride (COCl ₂) or phosgene.	2	2	
13.		<i>Fermentation of Molasses</i> : The sugar in mol				
15.		fructose, in the presence of an enzyme, inve fermentation in the presence of another en dioxide.	ertase. Glucose and fructose undergo			
		OR , the equations:		2	2	
		$C_{12}H_{22}O_{11} + H_2O \xrightarrow{invertase} C_6H_{12}O_6$	$+ C_6 H_{12} O_6$			
			ose Fructose			
		$C_6H_{12}O_6 \xrightarrow{zymase} 2 C_2H_5OH + 2 CO_2$				
		Ethanol				
14.		A is CH ₃ -OH (Methanol)		1	2	
15.	(:)	B is H-COONa (Sodium formate) Hinsberg's reagent is Benzenesulphonyl chlo		1		
15.	(i) (ii)			1		
	(11)	Primary amines react with benzenesulphon		1		
		benzenesulphonamide, which is soluble in a	likali.	-		
		OR,	0		2	
		$ \begin{array}{c} O \\ -S \\ -S \\ O \\ -S \\ -C1 \\ + \\ H \\ -N \\ -C_2H \\ H \\ -N \\ -C_2H \\ -H \\ -H \\ -N \\ -C_2H \\ -H \\ $	$H_{5} \longrightarrow \bigotimes_{\substack{i \in I \\ O \\ H}} N - C_{2}H_{5} + HCl$			
		Benzene sulphonyl chloride Ethanamine				
			om 16 to 26. Each carries 3 scores	,		
16.	(i)	Osmotic pressure is the excess pressure tha				
		osmosis. OR , it is the pressure that just stop	_	1		
		semi-permeable membrane. OR , It is the pr	essure developed on the solution side			
	(ii)	that just prevent osmosis. Reverse Osmosis: The direction of osmosis of	can be reversed if a pressure larger than			
	(11)	the osmotic pressure is applied to the soluti			3	
		of the solution through the semi permeable	-	1		
		OR , It is the flow of solvent molecules from				
		semi-permeable membrane, when pressure	_			
		on solution side.				
				·		

		Application: Desalination of sea water OR , Purification of water.	1	
17.	(i) (ii)	Molar conductivity is the conductivity of 1 mole of an electrolytic solution kept between two electrodes of a conductivity cell with unit area of cross section and at a distance of unit length. OR, Molar conductivity of a solution at a given concentration is the conductance of 'V' volume of a solution containing one mole of electrolyte kept between two electrodes with area of cross section A and distance of unit length. OR, Molar conductivity, $\Lambda_m = \hat{k}.V$ OR, Molar conductivity, $\Lambda_m = \hat{k}.V$ OR, $\Lambda_m = \frac{\hat{k}}{c}$ (where \hat{k} is the conductivity and c is the concentration of the electrolytic solution in mol/m ³). OR, Molar conductivity, $\Lambda_m = \frac{1000 \ \hat{k}}{M}$ [Where M is the molarity of the solution].	1	3
	(iii)	Strong electrolyte λm Weak electrolyte $\sqrt{c} \rightarrow$ $\Lambda_m = \Lambda^0_m - A\sqrt{c}$	1	
18.	(ii)	Here k = $5.5 \times 10^{-14} \text{ s}^{-1}$		
		$t\frac{1}{2} = \frac{0.693}{k}$ $= \frac{0.693}{5.5 \times 10^{-14}} = 1.26 \times 10^{13} \text{ s}$	1 1	3
	(ii)	mol ⁻¹ L s ⁻¹ OR, M ⁻¹ s ⁻¹ OR, mol ⁻¹ L min ⁻¹ OR, M ⁻¹ min ⁻¹	1	
19.	(i) (ii)	Because of the presence of partially filled d-orbitals OR , due to d-d transition. Electronic configuration of element with atomic number 25 is: [Ar] $3d^5 4s^2$ For divalent ion, the configuration becomes [Ar] $3d^5$ So there are 5 unpaired electrons (i.e. n = 5) Magnetic moment (μ_s) = $\sqrt{n(n+2)} = \sqrt{5(5+2)} = \sqrt{35} = 5.91$ BM	1 ½ ½ 1	3
20.		 Potassium dichromate is prepared from chromite ore (FeCr₂O₄). The preparation involves the following three steps: 1. Conversion of chromite ore to sodium chromate by fusing it with sodium carbonate in presence of air. 4 FeCr₂O₄ + 8 Na₂CO₃ + 7 O₂ → 8 Na₂CrO₄ + 2 Fe₂O₃ + 8 CO₂ 2. Acidification of sodium chromate with sulphuric acid to sodium dichromate. 2Na₂CrO₄ + 2 H⁺ → Na₂Cr₂O₇ + 2 Na⁺ + H₂O 3. Conversion of sodium dichromate to potassium dichromate by treating with potassium chloride. 	1	3
		Na ₂ Cr ₂ O ₇ + 2 KCl \rightarrow K ₂ Cr ₂ O ₇ + 2 NaCl [Explanation or equation required]	1	

21.	(i)	Tetraamminedichloridocobalt(III) chloride	1	
	(ii)	Geometrical isomers of [Co(NH ₃) ₄ Cl ₂] ⁺ are:		
	(iii)	$\begin{array}{c} \begin{array}{c} H_{3}N \\ H_{3}N \\ H_{3}N \\ NH_{3} \end{array} \overset{Cl}{\underset{NH_{3}}{}} \\ \end{array} \overset{Cl}{\underset{NH_{3}}{}} \\ \begin{array}{c} H_{3}N \\ H_{3}N \\ H_{3}N \\ Cl \end{array} \overset{Cl}{\underset{NH_{3}}{}} \\ \end{array} \overset{Cl}{\underset{NH_{3}}{}} \\ \begin{array}{c} H_{3}N \\ H_{3}N \\ Cl \end{array} \overset{Cl}{\underset{NH_{3}}{}} \\ \end{array} \overset{Cl}{\underset{Cl}{}} \\ \end{array} \\ \begin{array}{c} cis \ isomer \ [Co(NH_{3})_{4}Cl_{2}] \\ \hline \\ None \ of \ the \ geometrical \ isomers \ of \ this \ complex \ can \ show \ optical \ activity. \ [Both \ cis \ and \ trans \ isomers \ of \ [Co(NH_{3})_{4}Cl_{2}]^{+} \ have \ plane \ of \ symmetry. \ So \ they \ are \ optically \ inactive. \ Also, \ optical \ isomerism \ is \ commonly \ shown \ by \ octahedral \ complexes \ containing \ didentate \ ligands]. \end{array}$	1	3
22.	(i)	A co-ordination compound or complex salt keeps its identity both in solid and	1	
	(7	solution states. While a double salt keeps its identity only in solid state.	1	
		OR, A complex ion does not get ionized in solution, while a double salt gets ionized.		
	(ii)	Chelating ligands are ligands which can bind to the central atom in more than one	1	3
		position and form ring complexes.		3
		OR, Di- or polydentate ligands can bind to the central atom through two or more		
		donor atoms and form ring complexes. Such ligands are called chelating ligands.	1	
22	(iii)	Ethane-1,2-diamine OR , ethylene diamine (en) and Oxalate ion ($C_2O_4^{2-}$ or Ox^{2-}).	-	
23.	(i)	Due to the presence of inter molecular hydrogen bonding in alcohols OR, due to the	1	
	(::)	absence of hydrogen bonding in haloalkanes. Phenols are acidic, due to the greater electronegativity of sp ² hybridized carbon		
	(ii)	atom to which -OH group is bonded OR , due to the greater stability of phenoxide ion	_	
		compared to phenol.	1	3
	(iii)	Because the alkoxy group is ortho-para directing OR , due to greater electron density	1	
		at ortho and para positions, the electrophile enters at these positions.	-	
24.	(i)	Aldehydes are more reactive than ketones in nucleophilic addition reactions due to	1	
27.	(1)	steric reason and electronic reason. OR , due to the presence of + I effect (electron	-	
		donating inductive effect) and steric hindrance of 2 alkyl groups in ketones.		
	(ii)	Clemmensen reduction OR , Wolff-Kishner reduction.	1	
	(iii)	Esterification: Carboxylic acids (or, acid chlorides or acid anhydrides) when heated	4	2
		with alcohols or phenols in the presence of a mineral acid like concentrated H ₂ SO ₄ or HCl gas, we get esters.	1	3
		OR, R-COOH + R'-OH $\xrightarrow{H^+}_{H^+}$ R-COOR' + H ₂ O		
		OR, CH ₃ -COOH + CH ₃ -OH $\xrightarrow{H^+}$ CH ₃ -COO-CH ₃ + H ₂ O		
		$OR, CH_3-COOH + CH_3-OH CH_3-COO-CH_3 + H_2O$ Acetic acid Methanol Methyl acetate		
25.	(i)	Aniline when treated with NaNO ₂ and HCl to form Benzenediazonium salt, which on		
	(1)	treating with Cuprous chloride or copper powder to give chlorobenzene.	2	
	I			

	(ii)	concentrations. OR , solutions for which $p_1 \neq p_1^0 \cdot \chi_1$ and $p_2 \neq p_2^0 \cdot \chi_2$ are known as non-ideal solutions. OR , these are solutions for which vapour pressure is either higher or lower than that predicted by Raoult's law. For solutions which show negative deviation from Raoult's law, $p_1 < p_1^0 \cdot \chi_1$, $p_2 < p_2^0 \cdot \chi_2$, $\Delta_{mix} H < 0$ and $\Delta_{mix} V < 0$ Here the solute-solvent interactions (A-B interactions) are stronger than solute-		
27.	(i)	Answer any 4 questions from 27 to 31. Each carries 4 scores Non-ideal solutions: Solutions which do not obey ideal gas equation at all	1	
	(ii)	E.g. for fibrous protein: Keratin and myosinE.g. of globular proteins Insulin and albumins[Any 1 example for each is required]	1/2 1/2	
		The annual actus which cannot be synthesized in the body and must be obtainedthrough diet, are known as essential amino acids.E.g.: Valine, Leucine, Isoleucine, Arginine, Lysine, Threonine, Methionine,Phenylalanine, Tryptophan and Histidine.[Any 2 examples required]	1	3
26.	(ii) (i)	OR, diazotization of Aniline followed by Sandmeyer's reaction or Gattermann's reaction. OR, $ightarrow NH_2 NaNO_2 + HX$ 273-278 K $ightarrow NH_2 NaNO_2 + HX$ 273-278 K $ightarrow NH_2 NaNO_2 + HX$ $ightarrow NH_2 NaNO_2 + HX$ $ightarrow NH_2 - NaNO_2 + HX$ $ightarrow NH_2 - NaNO_2 + HX$ $ightarrow NH_2 - NaNO_2 + Interval (Interval (Inte$	1	3

		E.g. solution of phenol and aniline, chloroform and acetone. [Any one example is	1/2	
		required]		
	(iii)	The solutions which show a large positive deviation from Raoult's law form minimum	_	
		boiling azeotrope at a particular composition.	1	
		E.g. 95% aqueous ethanol solution by volume.		
28.	(i)	Kohlrausch's law states that the limiting molar conductivity of an electrolyte is the		
	()	sum of the individual contributions of the anion and the cation of the electrolyte.	1	
		OR, For an electrolyte like $A_x B_y$ which dissociates as: $A_x B_y \rightarrow x A^{y+} + y B^{x-}$		
		$\Lambda^{0}_{m_{(A_{\chi}B_{\chi})}} = x.\lambda^{0}_{(A^{\mathcal{Y}+})} + y.\lambda^{0}_{(B^{\mathcal{X}-})}$		
		Application: Determination of limiting molar conductivity (Λ^0_m) of weak electrolytes,		
		Determination of degree of dissociation and dissociation constant of weak	1	
		electrolytes. [Any one application is required]		4
	(ii)	1000 ድ ጅ	1	4
	()	$\Lambda_m = \frac{1000 \ x \ k}{M}$	_	
		Here $\hat{k} = 0.01148 \text{ S cm}^{-1}$ and M = 0.05 mol L ⁻¹		
			1	
		So, $\Lambda_m = \frac{1000 \times 0.01148}{0.05}$ = 229.6 S cm ² mol ⁻¹	T	
		0.05		
29.	(i)	In [Ni(CN) ₄] ²⁻ , in presence of CN ⁻ ligands, electron pairing in d-orbitals of Ni ²⁺ occurs.	1½	
		So, Ni ²⁺ is in dsp² hybridisation . So it has a square planar structure . Due to the		
		absence of unpaired electrons, it is diamagnetic.		
		But in [NiCl ₄] ²⁻ , in presence of Cl ⁻ ligands, electron pairing in d-orbitals of Ni ²⁺ does	1½	
		not occur. So, Ni ²⁺ is in sp³ hybridisation . So it has a tetrahedral structure . Due to		
		the presence of unpaired electrons, it is paramagnetic.		
		OR, [Ni(CN) ₄] ²⁻ : Here the central atom Ni is in +2 oxidation state. The electronic		
		configuration of Ni^{2+} is:		
		Ni $^{2+}$ - [Ar]3d ⁸ 4s ⁰ 4p ⁰		
		Here the co-ordination number of Ni is 4 and hence the no. of vacant orbitals	(1½)	
		required = 4. In presence of the ligand CN^{-} , the electrons in 3d level get paired.		4
		Now one 3d orbital, one 4s orbital and two 4p orbitals undergo dsp ²		•
		hybridization to form 4 new orbitals. Thus, the complex has square planar geometry		
		and is <i>diamagnetic,</i> due to the absence of unpaired electron.		
		[NiCl ₄] ²⁻ : Here also the central atom Ni is in +2 oxidation state.		
		Ni ²⁺ - [Ar] $3d^8 4s^0 4p^0$		
		Here the co-ordination number of Ni is 4 and hence the no. of vacant orbitals		
		required = 4. In presence of the ligand Cl ⁻ , the electrons in 3d level do not get		
		paired.	(1½)	
		Now one 4s orbitals and three 4p orbitals undergo sp³ hybridization to form 4		
		new orbitals. Thus, the complex has <i>tetrahedral</i> geometry and is <i>paramagnetic</i>		
		because of the presence of unpaired electron.		

	(ii)	$d_{x^{2}-y^{2}} d_{z}^{2} d_{z} d_{xy} d_{xz} d_{yz}$ $d_{x^{2}-y^{2}} d_{z}^{2} d_{z} d_{xy} d_{xz} d_{yz}$ $d_{xy} d_{xz} d_{yz}$ $d_{x^{2}-y^{2}} d_{z}^{2} d_{xy} d_{xz} d_{yz}$ Average energy Splitting of d orbitals in octahedral in octahedral crystal field crys	1	
30.	(ii) (iii) (iii)	Lucas Test: Lucas reagent is a mixture of conc. HCl and anhydrous ZnCl ₂ . Tertiary alcohols react with Lucas reagent to form immediate turbidity; secondary alcohols form turbidity within 5 minutes, while primary alcohols do not produce turbidity at room temperature. They give turbidity only on heating. Reimer-Tiemann Reaction: When Phenol is treated with chloroform in the presence of sodium hydroxide, followed by acidification, we get Salicylaldehyde (o- hydroxybenzaldehyde). OR, OR, OH Phenol (i) CHCl ₃ +aq.NaOH (ii) H ⁺ Phenol OH OH OH OH OH OH OH OH OH OH	1½	4
31.	(ii)	CH ₃ -CH-COOH OR , 2-chloropropanoic acid OR , α-chloropropionic acid	1	
	(ii)	CI CH ₃ -CHCl-COOH is more acidic than CH ₃ -CH ₂ -COOH.	1	
	(iii)	By treating acetaldehyde (ethanal) with methyl magnesium bromide followed by hydrolysis, we get propan-2-ol. OR ,	2	4
		$CH_3 - CHO + CH_3MgBr \longrightarrow CH_3 - CHOMgBr \xrightarrow{H_2O} CH_3 - CHOH - CH_3$ $\downarrow CH_3$		