ANSWER KEY

2022 YEAR HIGHER SECONDARY EXAMINATION _____ 2022

PART-I/II/III

SUBJECT: MATHEMATICS SCIENCE

CODE NO: FY 427

FIRST

VERSION:____

<u>GO</u> SCORES

HOURS

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
1÷	(a)	$A = \{1, 2\}$	1.8	
	(b)	$\{1,2\}, \{\}, \{1\}, \{2\}$	2	3
			Ť.	
2.	(9)	M(HUE) = 400		
		n(H) = 250		
		n(E) = 200		
		n(HUE) = n(H) + n(E) - n(HNE)	I	
	*.	400 = 250 + 200 - n(HNE)	1	3
	(6)	Remark: For all 1 50	I	
	(9)	B		-
3.	(a)	$P(1) = 1$, RHS = $\frac{1(1+1)}{2} = \frac{1\times2}{2} = 1$	1	
		Thrace : P(1) is true		
	(6)	Assume that the result is true for	a.	
	ж.	n = k.		
		$P(k): 1+2+3+\cdots+k = \frac{k(k+1)}{2}$	1	
		To prove that the result is true		•
		Contraction		

2/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		P(k+1) = 1+2+3+ + k + (k+1) = $\frac{k(k+1)}{2} + (k+1)$	Y2	ж Т
5		$= (k+1) \left(\frac{k}{2} + 1\right)$ $= (k+1) (k+2)$ $= 2$		3
		Result is true for $n = k+1$. Hence by $PM1$, result is true for all $n \in N$.	1/2	
4		$(a+b)^{f} = a^{4} + 4c_{1}a^{3}b + 4c_{2}a^{3}b^{2} + 4c_{3}ab^{3} + b^{4}c_{3}ab^{3} + b^{4}c_{3}ab^{3} + b^{4}c_{3}ab^{3} + b^{4}c_{3}ab^{3} + b^{4}c_{3}ab^{3} + b^{4}c_{3}ab^{4} + b^{4}c_{3}a^{3}b + 4c_{3}a^{3}b + 4c_{3}a^{3}b + b^{4}c_{3}ab^{3} + b^{4}c_{3}a^{3}b + b^{4}c_$	1 1/2	
		$f_{c_{3}ab^{3}+4}c_{3}ab^{3}$ $= 9a^{3}b + 8ab^{3}$ $= 8ab(a^{2}+b^{2})$	Y2	
ж) У		Remark: For writing the formula (a+b) ⁿ give) score		

3/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
2	(b)	f(zz - zz) - (zz + zz) $= 8 zz z$	1	3
5		$t_{r+1} = n c_r a^{n-r} b^r$ = $10 c_r 2c^{10-r} (\frac{1}{x})^r$	١	
		$= 10_{C_{Y}} \times \frac{10^{-Y}}{x} \frac{1}{x}$ = 10_{C_{Y}} \times \frac{10^{-2Y}}{x}	Yz	3
		For term independent of x,		
	÷	10-2x = 0 x = 5 Term independent of $x = 6^{th} + erm$	1 1/2	
5		= 10 _C 5		
6	æ.	$a_n = n(n+2)$ $a_1 = 1(1+2) = 3$	Y2 Y2	
		$q_2 = 2(2+2) = 8$ $q_3 = 3(3+2) = 15$ $q_4 = 4(4+2) = 24$	12 Y2 Y2	3
	2	$q_5 = 5(5+2) = 35$	1/2	

4/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
7.	(a)	x intercept = -10	1	
		y intercept = 5/2	I	×
		Remark: For writing 21 + 4 = 1	2	
	31	give 1 score.		3
ς.	(b)	3x - 4y = -10		2
		$\frac{3x}{-10} - \frac{4y}{-10} = 1$	1/2	
		$\frac{\chi}{\begin{pmatrix}-10\\3\end{pmatrix}} \left(\frac{5}{2}\right) = 1$	Yz	
		Remark: For direct answer give 13core.		
8.		$\frac{y^2}{4a} = 8x$	1	
		a = 2focus = (2,0)	1/2	3
		Aris is X-anis (y=0)	1	
		Length of latussectum = 8	1/2	
		Remark: For writing formula for focus and length of laturet		
		give 1/2 score each.	147	

5/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
9.	Ca)	$D = \int (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$	L	
		$= \int 3^{2} + 3^{2} + (-1)^{2}$	1	3
		= JI9		
	(6)	(i) (1,2,0)	I	
10		Using section formula, pt of		
		division is $(m\chi_2+n\chi_1, m\gamma_2+n\gamma_1, mz_2+nz)$ m+n, m+n, m+n, m+n) 1	
		Since point is on XY plane, z coordinate = 0		
	2	$\frac{mz_2 + nz_1}{m+n} = 0$	Y2 Y2	
		$mz_2 + nz_1 = 0$	2 8	3
		$m_{\chi} g + m_{\chi} 7 = 0$	1/2	
		8m + 7n = 0 $8m = -7n$		
	8	$\frac{m}{n} = -\frac{7}{8}$	1/2	
		m;n = -7:8		
		Remark : For alternate method		8

6/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
11 -		2	1	
	(6)	$\lim_{x \to 1} \left(\frac{x^2 - i^2}{(x - 1)} \right) = \lim_{x \to 1} \left(\frac{x^2 - i^2}{(x - 1)} \right)$	I	3
		= lim (x+1) n->1(x+1) = <u>2</u> <u>Remark</u> : For alternate method give full score.	١	
12.	(a)	JE is not an irrational number OR It is false that JE is	- 1	
	(6)	an irrational number. Converse: If nº is an odd natural number, then n is an odd natural number.	I	M
		Contrapositive If nº is not an odd natural number then n is not anodd natural number.	1	
13.	(a)	$A' = \{1, 3, 5, 7\}$	Y_	ĸ

7/18

Qu N		Answer Key/Value Points	Score	Total Score
	ŧ	$B' = \{1, 3, 5, 6, 7\}$	1/2	
	(6)	$AUB = \{2, 4, 6, 8\}$	1	
		(AUB)' = {1, 3, 5, 7}	I	4
	(c)	$A' \cap B' = \{1, 3, 5, 7\}$	I	
		(AUB)' = A' n B'		
1.		$GXH = \{(7,5), (7,2), (7,4)\}$	1	
		$(8, 5), (8, 2), (8, 4) \}$	1	
		$H \times G = \{(5, T), (2, T), (4, T), (4,$	1	
	5	(5,8), (2,8), (4,8)		4
	(b)	$\begin{array}{l} \chi +1 = 3 \\ \chi = 2 \end{array}$	1	1
	1	$\begin{array}{l} y - 2 = 1 \\ y = 3 \end{array}$	۱ ۱	3 - 1
-	-			
15	5 (9)	$\frac{2\pi}{3} = 120^{\circ}$	I	- 1
	(b)	$\cos x = -\frac{4}{5}$	1	4
	×	Secx = -5 4	١	4
	-	fanx = -3		

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		Remark : For any method,		
		give full score.		
10	2			
16.	(a)	L·H·S = 1, $P(1) = \frac{3-1}{2} = \frac{2}{2} = 1$	1	
		red 13 true.	,	
-	(b)	Suppose that the result is true		
		tor n-k		
		$P(k): 1+3+3^2 + \dots + 3^{k-1} = \frac{3^{k-1}}{2}$	I	2
		To prove the result is true for n=k+1		
		$P(k+1) = 1+3+ \cdots + 3^{k-1}+3^{k}$	Y2	2
		= P(k) + 3k	12	
		$= \frac{3^{k}-1}{2} + 3^{k}$	Y2	
			12	
		$= 3k - 1 + 2x 3^{k}$		4
		$= 3x_3k_{-1}$		
		2		
		$= 3^{k+1} - 1$		
-		2	1	
		Result is true for n=k+1		
		tence by PMI, result is		
	1	'rue for all positaire integers.		

9/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
17.	(a)	1	t.	
	(b)	$i^{39} = i^{36} \times i = 1 \times -i = -i$	1	k
		= o - i	1	Т
	(c)	(3-4i)	J	
18.	(a)	$\frac{1}{(1+i)} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1+i}$	Ĩ	2
		$=$ $\frac{1}{2}$ + $\frac{-1}{2}$ i	1	C. A A A A A A A A A A A A A A A A A A A
	(6)	$1+i = \gamma(\cos 0 + i \sin 0)$		×
		Y COSO = 1, Y Sina = 1	. 1/2	
	a 	$\gamma^2 = 1 + 1 = 2$ $\gamma = 52$	72	
v.		$tan \alpha = 1$, $\alpha = T / 4$	1/2	4
		$1+i = J_2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$	1/2	
	8	Remark: For waiting		
		1+i=r(cosa+isina), give		
		1 score.		
19,	(a)	Number of 3 digit numbers		

-	Sub Qns	Answer Key/Value Points	Score	Total Score
		with repetition = 5x 5x 5	2	
((6)	$= \underline{125}$ Number of selections = $\frac{5}{2} \times \frac{6}{3}$ = 200	.2	4
20 ((a)	A(x,-1), B(2,1), C(4,5)		
		Slope of AB = $\frac{1-1}{2-\chi} = \frac{2}{2-\chi}$	72	Ŀ
		Slope of BC = $\frac{5-1}{4-2} = \frac{4}{2} = 2$	1/2	2 2
. 8		$\frac{2}{2-x} = 2$	72	
		$2 = 4 - 2 \times$		
		$2\chi = 2$ $\chi' = 1$	Y2	
6	(1) (1)	Remark: For alternative method, give full score.		4
((6)			
		$(x_1, y_1) = (-2, 3)$ Point slope form		
		$y - y_1 = m(x - x_1)$	1	

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		y - 3 = -4(x - 2)	Y2	
		=-4(x+2)		
		y - 3 = -4 n + -8	1/2	
		4x + y = -5		
		4x + y + 5 = 0	9	3
21.		$focus = (\pm c, 0) = (\pm 4, 0)$	1	90
		$Vertex = (\pm q, 0) = (\pm 5, 0)$	1	
		Length of major anis- 20	1	
		Length of latus rectum = $\frac{2b^2}{a} = \frac{18}{5}$	1	4
		Remark : For finding correct		
		a, b and c, only		
		give 1/2 score each.		
52	(a)	5		
		X+J	÷.	
		$\frac{dy}{dx} = (x+1) \cdot 2x - x^2 \cdot x + 1$ $(x+1)^2$	1	×
		= 2x2+2x - x2	1	
		$(\chi+1)^2$		

12/18

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		Remark: For writing quotient rule give 1 score. $\frac{d}{dx}(x^2+z) = \frac{d}{dx}(x^2) + \frac{d}{dx}(z)$ $= 2x + 0 = 2x$		4
23.		Suppose J7 is not invational	1	
		$J_7 = \frac{a}{b}$, a,b, GZ , $b \neq 0$ its simplest form	1/2	
		Squasing $T = \frac{a^2}{6^2}$ $a^2 = 7b^2$ $\therefore a$ is multiple of T .	1/2	
		$ie (7k)^{2} = 7b^{2}$ $49k^{2} = 7b^{2}$	ſ	4
	~	$b^2 = 7k^2$ b is multiple of T	1/2	
		a and b have common multiple. which is a contradiction	1/2_	

			1.	3/18
Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
24	(a)	$n-1 p_3 : n p_4 = 1:9$		
		$\frac{(n-1)(n-2)(n-3)}{n(n-1)(n-2)(n-3)} = \frac{1}{9}$	T	-
		$\frac{1}{n} = \frac{1}{q}$	1	
		m = 9		
	(b)	$\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$		
*		$\frac{81}{101} + \frac{101}{101} = 50$	I	Λ
		$10x9 + 10 = \chi$	1/2	4
3		90 + 10 = x $\therefore x = 100$	1/2	~
		Remark: For alternate method give full score.		
25.	(9)	R is not a function	1	
		The element I have more than one image. M	1	
	(6)	\leftarrow \rightarrow \times	2	

1	A		1	
I	1	1	1	8
		1		0

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
	(c)	y = x + 1	٢	
		$R = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$	J	6
26.	(a)	cos(x+y)= cos x cosy - Sinx Siny	1	
		$\cos(x-y) = \cos x \cos y + \sin x \sin y$	1/2	
		(cos(x+y)+cos(x-y)=2cosx cosy	1/2_	
	(6)	$\cos(\frac{\pi}{4} + \pi) + \cos(\frac{\pi}{4} - \pi) = 2\cos \frac{\pi}{4} - \cos \frac{\pi}{4}$		
		$= 2x \perp x \cos x$	I	
- <u>-</u> * .	(c)	$= \int \overline{a} \cos \chi$		
	(-)	$\frac{S_{1}}{5}\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{3}\right) - \tan^{2}\frac{\pi}{4}$	1	6
		$= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} - (1)^{2}$	1	
	6	$= \frac{1}{4} + \frac{1}{4} - 1 = \frac{1}{2} - 1$		
		<u> </u>	1	
27.		x + 2y = 8 $2x + y = 8$	-	
		x 0 8 x 0 4 y 4 0 y 8 0	1+)	

$$\frac{15/18}{N_0 \text{ Ons}}$$

$$\frac{\text{Answerkey/Value Points}}{N_0 \text{ Ons}}$$

$$\frac{\text{Score}}{(0^{+})^4}$$

$$\frac{1}{(1^{+})^4}$$

$$\frac{1}{(1$$

	16/18
	1/18

Qn. No	Sub Qns		1	Answer Key/Valu	e Points		Score	Total Score
		= 7 9	(9-1	-99+99	9+	-)		1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 19
		= 7	(10.	-1)+(10 ² -	1)+	-)	1	
		=]	10+	10-++	no- (1+1+	n ter	1	6
		=] [10 (10-1)	- n]		J	
		=][10 (9	n]		20 A.S.	
29.	-	Midre	f,	$u_1 = \frac{x-q}{c}$	f,u,	fiui		
		5	10	-1	-10	10		
		15	17	0	\odot	0		
		25	13	1	13	13	3	
		35	10	2	20	40		
	-		50		23	63		

.

1	7/18
	100

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		$V(X) = \left[\frac{2}{5} \frac{f_{1} u^{2}}{N} - \left(\frac{2}{5} \frac{f_{1} u}{N}\right)^{2} \right] \times c^{2}$ $= \left[\frac{63}{50} - \left(\frac{23}{50}\right)^{2} \right] \times 10^{2}$]	
*		= 104.84 S.D = $\int Var$.	1/2	6
		$= \int 104.84$ = 10.239	Y2	
30.		A = NCC		
	-	B=NSS		
		$P(A) = \frac{30}{60}$		
		$P(B) = \underline{32}$ 60	e	
		$P(AB) = \frac{24}{60}$		
	(i)	P(AUB) = P(A) + P(B) - P(ANB)	1	
		$=\frac{30}{60}+\frac{32}{60}-\frac{24}{60}$	1	
		$= \frac{38}{60} = \frac{19}{30}$		
	(ii)	$P(A' \cap B') = P(A \cup B)!$	Y2	

Qn. No	Sub Qns	Answer Key/Value Points	Score	Total Score
		$= 1 - \frac{19}{30}$ $= \frac{11}{30}$	1.	6
	(iii)	$P(B-A) = P(B) - P(B \cap A)$	1 1/2	P
	1.5	$=\frac{32}{60}-\frac{24}{60}$	Y2	
		= 8 - 2 60 15		3
	22 1	Remark : For finding		
		$P(A) = \frac{30}{16} \frac{30}{60}, P(B) = \frac{32}{60}$		
		P(ANB) = 24 give y2 score each		
			14 2	
	1. N			