CUET (UG)

Mathematics Sample Paper - 10

Solved

Time Allowed: 50 minutes

Maximum Marks: 200

[5]

General Instructions:

- 1. There are 50 questions in this paper.
- 2. Section A has 15 questions. Attempt all of them.
- 3. Attempt any 25 questions out of 35 from section B.
- 4. Marking Scheme of the test:
- a. Correct answer or the most appropriate answer: Five marks (+5).
- b. Any incorrectly marked option will be given minus one mark (-1).
- c. Unanswered/Marked for Review will be given zero mark (0).

Section A

1. If $\begin{bmatrix} \cos \frac{2\pi}{7} & -\sin \frac{2\pi}{7} \\ \sin \frac{2\pi}{7} & \cos \frac{2\pi}{7} \end{bmatrix}^k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the least positive integral value of k is

a) 6

b) 4

c) 3

d) 7

2. If A = [a b], B = [-b -a] and C = $\begin{vmatrix} a \\ -a \end{vmatrix}$, then which is the correct statement. [5]

a)
$$A = -B$$

$$b) AC = BC$$

$$c) A + B = B + A$$

$$d) CA = CB$$

3. The order of the single matrix obtained from

 $\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix}_{3\times 2} \left\{ \begin{bmatrix} -1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix}_{2\times 3} - \begin{bmatrix} 0 & 1 & 23 \\ 1 & 0 & 21 \end{bmatrix}_{2\times 3} \right\}$ is

a) 2×3

b) 3×3

c) 3×2

d) 2×2

4. Find the slope of the normal to the curve $x = acos^3\theta$, $y = asin^3\theta$ at $\theta = \frac{\pi}{4}$ [5]

a) none of these

b) -1

c) 1

d) 0

5.	Minimum value of the function $f(x) = x^2 + x + 1$ is	[5]

- a) none of these b) 3 c) $\frac{3}{4}$ d) 1
- 6. The line $\frac{x}{a} + \frac{y}{b} = 1$ touches the curve $y = be^{-x/a}$ at the point [5]
 - a) $\left(a, \frac{a}{b}\right)$ b) (-a, ba)
 - c) (a,-a) d) (0,b)

$$7. \int \frac{\log x}{x} dx = ?$$

- a) $-\frac{1}{2}(\log x)^2 + C$ b) $\frac{1}{2}(\log x)^2 + C$
- c) $\frac{-2}{x^2} + C$ d) $\frac{2}{x^2} + C$

8.
$$\int \frac{e^x}{\sqrt{1+e^x}} dx = ?$$
 [5]

- a) $\frac{1}{2}\sqrt{1+e^x} + C$ b) $2\sqrt{1+e^x} + C$
- c) None of these d) $\frac{1}{\sqrt{1+e^x}} + C$

9.
$$\int \tan^{-1}(\cos cx - \cot x) dx = ?$$
 [5]

- a) $\frac{-x^2}{2} + C$ b) $\frac{-x^2}{4} + C$
- c) $\frac{x^2}{4} + C$ d) $\frac{x^2}{2} + C$

10. The area bounded by the curve
$$y = x^4 - 2x^3 + x^2 + 3$$
 with x-axis and ordinates corresponding to the minutes of y is

- a) 1 b) 4
- c) $\frac{30}{9}$ d) $\frac{91}{30}$

11. General solution of
$$(1+x^2) dy + 2xy dx = \cot x dx \ (x \neq 0)$$
 is [5]

a) $y(1+x^2) = log|sinx| + c$ b) $y = (1+x)^{-1}\log|sinx| - C(1+x^2)^{-1}$

c)
$$y = (1+x)^{-1} \log \lvert \sin x \rvert + C(1-x^2)$$
 d) $y = (1+x)^{-1} \log \lvert \sin x \rvert - C(1-x^2)^{-1}$

The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is			[5]	
$a) e^{X} + e^{-Y} = C$	b)	$e^{-X} + e^{-y} = 0$		
$c) e^{-X} + e^{Y} = C$	d)	$e^X + e^Y = C$		
The region represented by the	e inequation syst	em x, y ≥ 0 ,	$y \le 6, x + y \le 3 \text{ is}$	[5]
a) unbounded in first and s quadrants	econd b)	bounded in f	irst quadrant	
c) None of these	d)	unbounded i	n first quadrant	
Let X be a discrete random v	ariable. The prob	pability distri	bution of X is given below:	[5]
X	30	10	-10	
P(X)	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{1}{2}$	
Then E (X) is equal to				
a) 6	b)	4		
c) 3	d)	- 5		
			•	[5]
a) None of these	b)	$\frac{7}{12}$		
c) $\frac{1}{10}$	d)	$\frac{2}{5}$		
	Section	n B		
	Attempt any 2	5 questions		
Equivalence classes A _i satisf	y			[5]
A. No element of A_i is related to any element of A_j , $i \neq j$			j	
B. No element of A _i is related	l to any element	of A _i		
C. Some elements of A_i are related to any element of A_i , $i \neq j$				
D. All elements of A_i are related to any element of A_j , $i \neq j_i$ are related to any element of A_j , $i \neq j$				nt
a) B	b)	C		
c) A	d)	D		
	a) $e^{X} + e^{-y} = C$ c) $e^{-X} + e^{y} = C$ The region represented by the a) unbounded in first and s quadrants c) None of these Let X be a discrete random v X $P(X)$ Then $E(X)$ is equal to a) 6 c) 3 A can hit a target 4 times in 5 in 3 shots. The probability the a) None of these c) $\frac{1}{10}$ Equivalence classes A_i satisfy A . No element of A_i is related A . No element of A_i is related A . Some elements of A_i are related of A_i are related A . All elements of A_i are related A . All elements of A are related A and A are related	a) $e^{X} + e^{-y} = C$ b) c) $e^{-X} + e^{y} = C$ d) The region represented by the inequation syst a) unbounded in first and second quadrants c) None of these d) Let X be a discrete random variable. The profix $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a) $e^{X} + e^{-Y} = C$ b) $e^{-X} + e^{-Y} = C$ c) $e^{-X} + e^{Y} = C$ d) $e^{X} + e^{Y} = C$ The region represented by the inequation system $x, y \ge 0$, a) unbounded in first and second quadrants c) None of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of these d) unbounded in first and second publication of the second publication of the probability distribution of these d) unbounded in first and second publication of the seco	a) $_{c}x + _{c}y = C$ b) $_{c}x + _{c}y = C$ d) $_{e}x + _{c}y = C$ d) $_{e}x + _{e}y = C$ The region represented by the inequation system $x, y \ge 0, y \le 6, x + y \le 3$ is a) unbounded in first and second quadrants c) None of these d) unbounded in first quadrant Let X be a discrete random variable. The probability distribution of X is given below:

17.
$$\cot^{-1}\left(\frac{ab+1}{a-b}\right) + \cot^{-1}\left(\frac{bc+1}{b-c}\right) + \cot^{-1}\left(\frac{ca+1}{c-a}\right) =$$
 [5]

a) 0

b) None of these

c) -1

d) 1

18. If A is a square matrix, then A - A' is a

a) symmetric matrix

- b) none of these
- c) skew-symmetric matrix
- d) diagonal matrix

[5]

[5]

19. The value of
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3A - B$$
 then the values of A and B are:

- a) A = 3abc, B = a + b + c
- b) A = 2abc, B = a + b + c
- c) A = abc, $B = a^3 + b^3 + c^3$ d) A = 0, $B = a^2 + b^2 + c^2$

20. The matrix
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 is

a) Orthogonal

b) Nonsingular

c) Idempotent

d) Nilpotent

21.
$$\begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix} = ?$$
 [5]

a) 2(a + b + c)

b) 0

c) $_{a}^{2}b_{c}^{2}$

d) a + b + c

22. If
$$x = f(t) \cos t - f'(t) \sin t$$
 and $y = f(t) \sin t + f'(t) \cos t$, then $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 =$ [5]

a) none of these

b) f(t) - f''(t)

c) $\{f(t) + f''(t)\}^2$

d) $\{f(t) - f''(t)\}^2$

23. If
$$f(x) = \begin{cases} kx + 5, & \text{when } x \le 2 \\ x + 1, & \text{when } x > 2 \end{cases}$$
 is continuous at $x = 2$ then $k = ?$

	a) -2	b) -1	
	c) 2	d) -3	
24.	Find the value of $f(0)$, so that the function continuous for all x, given by	$f(x)=rac{\sqrt{a^2-ax+x^2}-\sqrt{a^2+ax+x^2}}{\sqrt{a+x}-\sqrt{a-x}} ext{ becomes}$	[5]
	a) $a^{1/2}$	b) _{-a} 1/2	
	c) $a^{3/2}$	d) $_{-a}3/2$	
25.	If $y^2 = ax^2 + b$, then $\frac{d^2y}{dx^2}$ is equal to		[5]
	a) None of these	b) $\frac{ab}{y^2}$	
	c) $\frac{ab}{y^3}$	d) $\frac{ab}{x^3}$	
26.	Number of points at which $f(x) = \frac{1}{\log x }$ is discontinuous is		[5]
	a) 1	b) 3	
	c) 2	d) 4	
27.	$f(x) = 2x - \tan^{-1} x - \log \{x + \sqrt{x^2 + 1}\}$ is monotonically increasing when		[5]
	a) $x \in R$	b) $x > 0$	
	c) $x \in R$ - (0)	d) x < 0	
28.	The slope of the tangent to the curve $x = a$ point ' θ ' is	a $(\cos \theta + \theta \sin \theta)$, $y = a (\sin \theta - \theta \cos \theta)$ at any	[5]

a) $\tan \theta$

b) – cot θ

 $c)-tan\;\theta$

d) cot θ

29. Function $f(x) = a^{X}$ is increasing on R, if

[5]

a) a > 0

b) a < 0

c) a > 1

d) 0 < a < 1

30. The minimum value of $\frac{x}{\log x}$, x > 1, is

[5]

`		0.4
a)	none	of these

b) e

$$c) - e$$

d) $\frac{1}{e}$

31.
$$\int x \log x \, dx = ?$$

[5]

a)
$$\frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + C$$

b) $x \log x + \frac{1}{2} x^2 + C$

c)
$$\frac{1}{2} x^2 \log x + \frac{1}{4} x^2 + C$$

d) None of these

32. If
$$f(a + b - x) = f(x)$$
, then $\int_a^b x f(x) dx$ is equal to

[5]

a)
$$\frac{a+b}{2} \int_a^b f(x) dx$$

b) $\frac{b-a}{2} \int_a^b f(x) dx$

c)
$$\frac{a+b}{2} \int_a^b f(b-x) dx$$

d) $\frac{a+b}{2} \int_a^b f(b+x) dx$

33.
$$\int (x2^X) dx = ?$$

[5]

a)
$$\frac{2^x}{(\log 2)^2}$$
 (x log 2 - 1) + C

b) None of these

c)
$$\frac{x \cdot 2^x}{(\log 2)} + \frac{2^x}{(\log 2)^2} + C$$

d) $\frac{2^x}{(\log 2)}$ (x + log 2) + C

$$34. \qquad \int \frac{\sin 2x}{\sin x} dx = ?$$

[5]

a)
$$2 \cos x + C$$

b) $2\sin x + C$

c)
$$\frac{1}{2}\sin x + C$$

d) $\frac{1}{2}\cos x + C$

35. The area bounded by
$$y = |\sin x|$$
, the $x - axis$ and the line $|x| = \pi$ is

[5]

a) none of these

b) 4 sq. units

c) 6 sq. units

d) 2 sq. units

36. Find the particular solution for
$$(x + y)dy + (x - y) dx = 0$$
; $y=1$ when $x = 1$

[5]

a)
$$\log \left(x^2-y^3\right)-\ 2 an^{-1}rac{y}{x}\ =\ rac{\pi}{2}-\log 2\log \left(x^2+\ y^2\right)-\ 2 an^{-1}rac{y}{x}\ =\ rac{\pi}{2}+\log 2$$

$$\text{c)} \log \left(x^2 - \ y^2 \right) + \ 2 \text{tan}^{-1} \frac{y}{x} \ = \ \tfrac{\pi}{2} + \log 2 \log |x^2 + y^2| + 2 tan^{-1} \frac{y}{x} = \log 2 + \tfrac{\pi}{2}$$

37. The differential equation representing the family of curves
$$y = a \sin(\lambda x + \alpha)$$
 is

[5]

a)
$$\frac{d^2y}{dx^2} - \lambda y = 0$$

b)
$$\frac{d^2y}{dx^2} + \lambda y = 0$$

c)	d^2y	$-\lambda^2 y = 0$	n
	dx^2	$\wedge y$	v

d)
$$\frac{d^2y}{dx^2} + \lambda^2 y = 0$$

38. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{x}$ is:

[5]

b) $\frac{x}{e^x}$

c)
$$\frac{e^x}{x}$$

 $d)_{xe}x$

39. If $|\vec{a}|=10,$ $|\vec{b}|=2,$ and $\vec{a}\cdot\vec{b}=12,$ then value of $|\vec{a}\times\vec{b}|$ is

[5]

b) 16

d) 10

40. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for some non-zero vector \vec{r} , then the value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ is [5]

a) 2

b) 3

c) 0

d) None of these

41. Consider the following inequalities in respect of vectors \vec{a} and \vec{b} .

[5]

I.
$$|\vec{a} + \vec{b}| \leq |\vec{a}| + |\vec{b}|$$

II.
$$|ec{a} - ec{b}| \geq |ec{a}| - |ec{b}|$$

Which of the above is/are correct?

a) Only II

b) Neither I nor II

c) Both I and II

d) Only I

42. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{OB}$

a) $3\overrightarrow{OC}$

b) $4\overrightarrow{OG}$

c) $2\overrightarrow{OG}$

d) $\overrightarrow{5OG}$

43. Let \hat{a} , \hat{b} be two unit vectors and θ be the angle between them. What is $\cos(\frac{\theta}{2})$ equal to? [5]

a) $\frac{|\hat{a}+\hat{b}|}{2}$

b) $\frac{|\hat{\mathbf{a}} - \hat{\mathbf{b}}|}{4}$

 \hat{c} $\frac{|\hat{a}-\hat{b}|}{2}$

d) $\frac{|\hat{\mathbf{a}} + \hat{\mathbf{b}}|}{4}$

44.	If a vector makes angles α , β and γ with the x axis, y axis and z axis respectively the value of $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$ is		[5]
	a) 2	b) 0	
	c) 3	d) 1	
45.	The locus represented by $xy + yz = 0$ is		[5]
	a) A pair of perpendicular planes	b) A pair of perpendicular lines	
	c) A pair of parallel lines	d) A pair of parallel planes	
46.	Cartesian equation of a plane that passes through the intersection of two given planes $A_1x + B_1y + C_1z + D_1$ and $A_2x + B_2y + C_2z + D_2 = 0$ is		
	a) $(A_1x + B_1y - C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$	b) $(-A_1x + B_1y + C_1z + D_1) + \lambda$ $(A_2x + B_2y + C_2z + D_2) = 0$	
	c) $(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$	d) $(A_1x - B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$	
47.	7. You are given that A and B are two events such that $P(B) = \frac{3}{5}$, $P(A \mid B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then $P(A)$ equals		[5]
	a) $\frac{1}{2}$	b) $\frac{1}{5}$	
	c) $\frac{3}{5}$	d) $\frac{3}{10}$	
48.	3. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities of an accident involving a scooter driver, car driver, and truck driver are 0.01, 0.03, and 0.15, respectively. One of the insured persons meets with an accident. The probability that the person is a scooter driver, is		[5]
	a) $\frac{1}{52}$	b) $\frac{19}{52}$	
	c) $\frac{15}{52}$	d) $\frac{3}{52}$	
49.	8 coins are tossed simultaneously. The probability of getting atleast 6 heads is		[5]
	a) $\frac{7}{64}$	b) $\frac{249}{256}$	
	c) $\frac{57}{64}$	d) $\frac{37}{256}$	

Let X be a discrete random variable. Then the variance of X is

[5]

50.

a)
$$\sqrt{E(X^2) - (E(X))^2}$$

$$^{b)}\operatorname{E}(\operatorname{X}^2) - (\operatorname{E}(\operatorname{X}))^2$$

c)
$$E(X^2) + (E(X))^2$$

d)
$$E(X^2)$$

Solutions

Section A

1. **(d)** 7

Explanation:
$$\begin{bmatrix} \cos\frac{2\pi}{7} & -\sin\frac{2\pi}{7} \\ \frac{2\pi}{\sin\frac{7}{7}} & \cos\frac{2\pi}{7} \end{bmatrix}^{k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$|A| = \cos^2 \frac{2\pi}{7} - \sin \frac{2\pi}{7} \left(-\sin \frac{2\pi}{7} \right)$$
$$= \cos^2 \frac{2\pi}{7} + \sin^2 \frac{2\pi}{7}$$

$$I = 1$$

$$I^k = I \ \{K \ can \ be \ anything\}$$

Let
$$\theta = \frac{2\pi}{7}$$

$$A^{2} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \times \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\theta - \sin^2\theta & -\sin\theta\cos\theta - \sin\theta\cos\theta \\ \sin\theta\cos\theta + \sin\theta\cos\theta & \cos^2\theta - \sin^2\theta \end{bmatrix}$$

As
$$\{\cos^2\theta - \sin^2\theta = \cos^2\theta \text{ and } 2\sin\theta\cos\theta = \sin^2\theta\}$$

$$= \begin{bmatrix} \cos 2\theta & -2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & \cos 2\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$\mathbf{A}^4 = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix} \times \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos 4\theta & -\sin 4\theta \\ \sin 4\theta & \cos 4\theta \end{bmatrix}$$

Similarly,
$$A^7 = \begin{bmatrix} \cos 7\theta & -\sin 7\theta \\ \sin 7\theta & \cos 7\theta \end{bmatrix}$$

Hence,
$$\theta = \frac{2\pi}{7}$$

$$7\theta = 2\pi$$

Multiplying Cos & Sin, to LHS & RHS,

$$\cos 7\theta = \cos 2\pi = 1$$

$$\sin 7\theta = \sin 2\theta = 0$$

$$\begin{bmatrix} \cos 7\theta & -\sin 7\theta \\ \sin 7\theta & \cos 7\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So,
$$k = 7$$

$$A^7 = I$$

Hence,
$$k = 7$$
.

2.

(c)
$$A + B = B + A$$

Explanation: A + B = B + A [by properties matrix addition, is communitative]

3.

(b)
$$3 \times 3$$

Explanation:
$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix}_{3 \times 2} \left\{ \begin{bmatrix} -1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix}_{2 \times 3} - \begin{bmatrix} 0 & 1 & 23 \\ 1 & 0 & 21 \end{bmatrix}_{2 \times 3} \right\}$$

$$= \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix}_{3 \times 2} \begin{bmatrix} -1 & -1 & -21 \\ 1 & 0 & -20 \end{bmatrix}_{2 \times 3}$$

$$= \begin{bmatrix} -2 & -1 & -1 \\ 2 & 0 & -40 \\ 1 & -2 & -102 \end{bmatrix}_{3 \times 3}$$

4.

Explanation:
$$x = acos^3 \theta$$
, $y = asin^3 \theta$
= $\frac{dx}{d\theta} = -3acos^2 \theta sin\theta$, $\frac{dy}{d\theta} = 3asin^2 \theta cos\theta$

Slope of tangent
$$=$$
 $=$ $\frac{dy}{dx}$ $=$ $\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ $=$ $\frac{-3a\cos^2\theta\sin\theta}{3a\sin^2\theta\cos\theta}$ $=$ $-\tan\theta$

Slope of normal is
$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{-tan\theta} = cot\theta$$

When, Slope of normal $= \cot \frac{\pi}{4} = 1$

5.

(c)
$$\frac{3}{4}$$

Explanation: Given, $f(x) = x^2 + x + 1$

$$\Rightarrow$$
 f'(x) = 2x + 1

For minimum value of f(x) we have f'(x) = 0

$$\Rightarrow 2x + 1 = 0 \Rightarrow x = \frac{-1}{2}$$

Now, f'(x) = 2 > 0, hence the minimum of f(x) exist at $x = \frac{-1}{2}$ and minimum value = $f(\frac{-1}{2})$

$$=\frac{3}{4}$$

6.

(d)
$$(0,b)$$

Explanation: Given $y = be^{-x/a}$(i)

Then, Slope of the tangent at any point (x,y) for the curve (i) is $\frac{dy}{dx} = \frac{-b}{a}e^{-x/a}$

Slope of the line
$$\frac{x}{a} + \frac{y}{b} = 1$$
 is $\frac{dy}{dx} = \frac{-b}{a}$

If the line touches the curve then

$$\frac{-b}{a}e^{-x/a} = \frac{-b}{a}$$

$$\Rightarrow e^{-\chi/a} = 1$$

$$\Rightarrow \frac{x}{a} = 0$$

$$\Rightarrow x = 0$$

Now, put x = 0 in (i), we get y = b

Hence, we have the line touches the curve at (0,b) which is a point on the Y-axis.

(b)
$$\frac{1}{2}(\log x)^2 + C$$

Explanation: Given Integral be: $I = \int \frac{\log x}{x}$

Let
$$log x = u$$

$$\Rightarrow \frac{1}{x}dx = du$$

$$\therefore \int \frac{\log x}{x} dx$$

$$=\int udu$$

$$=\frac{u^2}{2}+c$$

$$=\frac{(\log x)^2}{2}+c$$

where c is the integrating constant.

8.

(b)
$$2\sqrt{1+e^x}+C$$

Explanation: Given: $I = \int \frac{e^x}{\sqrt{1 + e^x}}$

Let,
$$1 + e^{X} = z^{2}$$

$$\Rightarrow$$
 $e^{X}dx = 2zdz$

So,

$$\int \frac{e^X}{\sqrt{1+e^X}} dx$$

$$=\int \frac{2zdz}{z}$$

$$=2\int dz$$

$$=2z+c$$

$$=2z+c$$

$$=2\sqrt{1+e^x}+c$$

where c is the integrating constant

(c)
$$\frac{x^2}{4} + C$$

Explanation: Given:
$$\int \tan^{-1}(\cos cx - \cot x)dx = \int \tan^{-1}\left(\frac{1-\cos x}{\sin x}\right)dx$$

$$= \int \tan^{-1} \left(\frac{2\sin\frac{x}{2}\sin\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} \right) dx$$

$$= \int \tan^{-1} \left(\tan\frac{x}{2} \right) dx$$

$$= \int \frac{x}{2} dx$$

$$\frac{x^2}{4} + C$$

(d)
$$\frac{91}{30}$$

Explanation: The area bounded by the curve $y = x^4 - 2x^3 + x^2 + 3$ with x-axis and ordinates

Minimum value of y when x = 0 is y = 3

Minimum value of y when x = 1 is y = 3

$$\Rightarrow \int_0^1 \left(x^4 - 2x^3 + x^2 + 3 \right) dx$$

$$\Rightarrow \left[\frac{x^5}{5} - 2\frac{x^4}{4} + \frac{x^3}{3} + 3x \right]_0^1$$

$$\Rightarrow \frac{1}{5} - \frac{2}{4} + \frac{1}{3} + 3$$

$$\Rightarrow \frac{91}{30}$$

11. **(a)**
$$y(1+x^2) = log |sinx| + c$$

Explanation: $(1 + x^2)dy = (cotx - 2xy)dx$

$$\frac{dy}{dx} = \frac{\cot x - 2xy}{1 + x^2}$$

$$\frac{dy}{dx} + \frac{2x}{1+x^2}y = \frac{\cot x}{1+x^2}$$

It is a linear differential equation in y.

Therefore, Solution is

$$ye^{\int \frac{2xdx}{1+x^2}} = \int \frac{\cot x}{1+x^2} e^{\int \frac{2xdx}{1+x^2} dx + c}$$
$$y(1+x^2) = \int \frac{\cot x}{1+x^2} (1+x^2) dx + c$$
$$y(1+x^2) = \int \cot x dx + c$$
$$y(1+x^2) = \log|\sin x| + c$$

12. (a)
$$e^{X} + e^{-y} = C$$

Explanation: We have, $\frac{dy}{dx} = e^{x+y}$

$$\Rightarrow \frac{dy}{dx} = e^{X} \times e^{Y}$$

separating variables

$$\Rightarrow e^{-y}dy = e^{x}dx$$

Integrating both sides

$$\Rightarrow \int e^{-y} dy = \int e^{X} dx$$

$$\Rightarrow -e^{-y} = e^{x} + c$$

$$\Rightarrow e^{x} + e^{-y} = -c$$

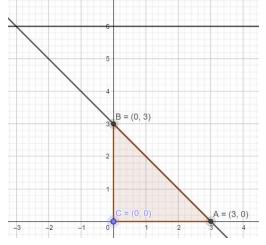
Or,

$$e^{x} + e^{-y} = c$$
 (c is a constant)

13.

(b) bounded in first quadrant

Explanation: Converting the given inequations into equations, we obtain y = 6, x + y = 3, x = 0 and y = 0, y = 6 is the line passing through (0, 6) and parallel to the X axis. The


region below the line y = 6 will satisfy the given inequation.

The line x + y = 3 meets the coordinate axis at A(3, 0) and B(0, 3). Join these points to obtain the line x + y = 3 Clearly, (0, 0) satisfies the inequation $x + y \le 3$. So, the region in x + y = 3 represents the solution set of the given equation.

The region represented by $x \ge 0$ and $y \ge 0$:

Since every point in the first quadrant satisfies these inequations. So, the first quadrant is

the region represented by the inequations.

14.

(b) 4

Explanation:
$$E(X) = 30 \times \frac{1}{5} + 10 \times \frac{3}{10} - 10 \times \frac{1}{2} = 4$$

15.

(c)
$$\frac{1}{10}$$

Explanation:
$$P(A) = \frac{4}{5}, P(B) = \frac{3}{4}, P(C) = \frac{2}{3}$$

$$P(B \cap C \cap A') = P(B \cap C) - P(B \cap C \cap A)$$

As the events are independent,

So,
$$P(B \cap C) = P(B) \cdot P(C) = \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$$

And
$$P(B \cap C \cap A) = P(B)$$
. $P(C)$. $P(A) = \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3} = \frac{2}{5}$

$$P(B \cap C \cap A') = \frac{1}{2} - \frac{2}{5} = \frac{1}{10}$$

Section B

16.

(c) A

Explanation: $A_1,\ A_2, A_3, \ldots A_k$ be subsets of a set A such that $\bigcup_{i=1}^k A_i = A_i$ and $A_i \cap A_j = \phi$ for $i \neq j$

17. **(a)** 0

Explanation: we know that
$$\cot^{-1} \left[\frac{xy+1}{x-y} \right] = \cot^{-1} x - \cot^{-1} y$$

$$\cot^{-1}\left(\frac{ab+1}{a-b}\right) + \cot^{-1}\left(\frac{bc+1}{b-c}\right) + \cot^{-1}\left(\frac{ca+1}{c-a}\right)$$

$$= \cot^{-1}a - \cot^{-1}b + \cot^{-1}b - \cot^{-1}c + \cot^{-1}c - \cot^{-1}a = 0$$

(c) skew-symmetric matrix

Explanation: The difference of a matrix A and its transpose is always skew – symmetric.

19.

(c)
$$A = abc$$
, $B = a^3 + b^3 + c^3$

Explanation:
$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = a(bc - a^2) - b(b^2 - ac) + c(ab - c^2)$$

=
$$abc - a^3 - b^3 + abc + abc - c^3$$

= $3abc - (a^3 + b^3 + c^3)$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc - (a^3 + b^3 + c^3)$$

:.
$$A = abc$$
, $B = a^3 + b^3 + c^3$

20.

(c) Idempotent

Explanation: clearly for given matrix $A^2 = A$

Therefore idempotent

21.

(b) 0

Explanation: 0

22.

(c)
$$\{f(t) + f''(t)\}^2$$

Explanation: $x = f(t) \cos t - f(t) \sin t$, and $y = f(t) \sin t + f(t) \cos t$ Now.

$$x \cos t + y \sin t = f(t) (\cos^2 t + \sin^2 t) = f(t) ..(i)$$

$$x \sin t - y \cos t = -f'(t) (\cos^2 t + \sin^2 t) = -f'(t)...(ii)$$

Differentiating (i) and (ii) w.r.t. to t we get

$$\frac{dx}{dt}\cos t - x\sin t + \frac{dy}{dt}\sin t + y\cos t = f(t)$$

$$\Rightarrow \frac{dx}{dt}\cos t + \frac{dy}{dt}\sin t = 0 \dots (iii)$$

and
$$\frac{dx}{dt} \sin t + x \cos t - \frac{dy}{dt} \cos t + y \sin t = -f''(t)$$

$$\Rightarrow \frac{dx}{dt} \sin t - \frac{dy}{dt} \cos t = -f''(t) - f(t) \dots (iv)$$
Solving (iii) and (iv) we get
$$\frac{dx}{dt} = -\sin t (f''(t) + f(t))$$

$$\frac{dx}{dt} = \cos t (f''(t) + f(t))$$

$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \left(f''(t) + f(t)\right)^2$$

(b) -1

Explanation: For continuity left hand limit must be equal to right hand limit and value at the point.

Continuous at x = 2..

$$L.H.L = \lim_{x \to 2} -(kx + 5)$$

$$\Rightarrow \lim_{h \to 0} (k(2-h)+5)$$

$$\Rightarrow$$
 k(2 - 0) + 5 = 2k + 5

R.H.L =
$$\lim_{x \to 2} + (x+1)$$

$$\Rightarrow \lim_{h \to 0} (2+h+1)$$

$$\Rightarrow$$
 2 + 0 + 1

=3

As f(x) is continuous, we get

$$2k + 5 = 3$$

$$k = -1.$$

24.

(b)
$$-a^{1/2}$$

 $x \rightarrow 0$

Explanation:
$$\lim \frac{\sqrt{a^{-}-ax^{+}x^{-}}-\sqrt{a^{-}+ax^{+}x^{-}}}{\sqrt{a^{+}x^{-}}-\sqrt{a^{-}x}}$$

Explanation:
$$\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}$$

$$= \lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}} \times \frac{\sqrt{a + x} + \sqrt{a - x}}{\sqrt{a + x} + \sqrt{a - x}}$$

$$= \lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}$$

$$= \lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}$$

$$x \frac{(\sqrt{a+x}+\sqrt{a-x})\sqrt{a^2-ax+x^2}+\sqrt{a^2+ax+x^2}}{\sqrt{a^2-ax+x^2}+\sqrt{a^2+ax+x^2}}$$

$$= \lim_{x\to 0} \frac{a^2-ax+x^2-\left(a^2+ax+x^2\right)}{2x} \times \frac{\sqrt{a+x}+\sqrt{a}}{\sqrt{a^2-ax+x^2}+\sqrt{a^2}}$$

$$= \lim_{x\to 0} \frac{-2ax}{2x} \times \frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a^2-ax+x^2}+\sqrt{a^2+ax+x^2}}$$

$$= -\frac{2a\sqrt{a}}{a+a}$$

$$= -\frac{2a\sqrt{a}}{2a}$$

$$= -\sqrt{a}$$

(c)
$$\frac{ab}{v^3}$$

Explanation:
$$y^2 = ax^2 + b \Rightarrow 2y \frac{dy}{dx} = 2ax \Rightarrow y \frac{dy}{dx} = ax$$

$$\Rightarrow \frac{dy}{dx} = \frac{ax}{y} \Rightarrow \frac{d^2y}{dx^2} = \frac{ya - ax\frac{dy}{dx}}{y^2}$$

$$= \frac{ya - ax\frac{ax}{y}}{y^2} = \frac{a(y^2 - ax^2)}{y^3} = \frac{ab}{y^3}$$

26.

Explanation:
$$f(x) = \frac{1}{\log |x|}$$

f(x) is not defined for x = 0, -1, 1

 \therefore f(x) is not continuous at x = 0, -1, 1

27. (a) $x \in R$

Explanation: $x \in R$

28. (a) $\tan \theta$

Explanation: Given $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$

$$\frac{dx}{d\theta} = a[-\sin\theta + \theta \cdot \cos\theta + \sin\theta] = a\theta\cos\theta, \frac{dy}{d\theta} = a[\cos\theta - (\theta \cdot -\sin\theta + \cos\theta)] = a\theta\sin\theta$$

Slope of the tangent
$$=\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\theta sin\theta}{a\theta cos\theta} = tan\theta$$

29. **(a)**
$$a > 0$$

Explanation: f(x) = ax

$$f'(x) = a$$

f(x) is increasing on $\frac{1}{2}$ if a > 0

30.

(b) e

Explanation:
$$f(x) = \frac{x}{\log x}$$

$$\Rightarrow f'(x) = \frac{\log x \cdot 1 - x \cdot \frac{1}{x}}{(\log x)^2}$$

For maximum or minimum values of x we have f'(x) = 0

$$f'(x) = 0 \Rightarrow \frac{\log x - 1}{(\log x)^2} = 0 \Rightarrow (\log x - 1) = 0$$

 $\Rightarrow \log x = 1 \Rightarrow x = e$

Now,
$$f''(x) = (\log x - 1) \frac{-2}{(\log x)^3} + (\log x)^{-2} \cdot \frac{1}{x}$$

$$f''(e) = \frac{1}{e} > 0$$

Hence, f(x) has a minimum value f(e) = e.

31. (a)
$$\frac{1}{2}$$
 x² log x - $\frac{1}{4}$ x² + C

Explanation: We have,

$$\int x. \log x dx = \log x. \int x dx - \int \left(\left(\frac{d}{dx} \log x \right) \int x dx \right) = \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + c$$

32. **(a)**
$$\frac{a+b}{2} \int_{a}^{b} f(x) dx$$

Explanation: Given Integral is: $\int_{a}^{b} x f(x) dx$

Let
$$I = \int_a^b x f(x) dx$$

as, $f(x) = f(a + b - x)$

$$\Rightarrow I = \int_{a}^{b} (a+b-x)f(a+b-x)dx$$

$$\Rightarrow I = \int_{a}^{b} (a+b-x)f(x)dx$$

$$\Rightarrow I = \int_{a}^{b} (a+b)f(x)dx - \int_{a}^{b} (x)f(x)dx$$

$$\Rightarrow I = \int_{a}^{b} (a+b)f(x)dx - I$$

$$\Rightarrow 2I = \int_{a}^{b} (a+b)f(x)dx$$

$$\Rightarrow I = \frac{(a+b)}{a} \int_{a}^{b} f(x)dx$$

33. (a)
$$\frac{2^x}{(\log 2)^2}$$
 (x log 2 - 1) + C

Explanation:
$$I = \int xI \cdot 2II^x dx = x \cdot \frac{2^x}{(\log 2)} - \int \frac{2^x}{(\log 2)} dx$$
$$= \frac{x \cdot 2^x}{(\log 2)} - \frac{2^x}{(\log 2)^2} + C$$

(b)
$$2\sin x + C$$

Explanation: Given:

$$\int \frac{\sin 2x}{\sin x} dx = \int \frac{2\sin x \cos x}{\sin x} dx$$
$$= 2\int \cos x dx$$
$$= 2\sin x + c$$

35.

(b) 4 sq. units

Explanation: Required area:

$$= 2\int_{0}^{\pi} \sin x dx = 2[-\cos x]_{0}^{\pi} = 2[1+1] = 4sq. \text{ units}$$

36.

(d)
$$\log |x^2 + y^2| + 2\tan^{-1}\frac{y}{x} = \log 2 + \frac{\pi}{2}$$

Explanation: $\frac{dy}{dx} = \frac{y-x}{x+y}$ it is a homogenous equation Hence we put y=vx $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} let y = vx$

$$\frac{dy}{dy} = y + x \frac{dv}{dx}$$

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx - x}{vx + x}$$

$$x \frac{dv}{dx} = \frac{v - 1}{v + 1} - v$$

$$x \frac{dv}{dx} = \frac{v - 1 - v^2 - v}{v + 1}$$

$$\int \frac{(v + 1) dv}{1 + v^2} = -\int \frac{dx}{x}$$

$$\int \frac{vdv}{1 + v^2} + \int \frac{dv}{1 + v^2} = -\int \frac{dx}{x}$$

$$\frac{1}{2} log |1 + v^2| + tan^{-1}v = -logx + c$$

$$log |1 + v^2| + 2tan^{-1}v + 2logx = c$$
Resubstituting v=y/x we get
$$log |\frac{x^2 + y^2}{x^2}| + 2tan^{-1}\frac{y}{x} + 2logx = c$$
When x=y=1 we get,
$$log |\frac{1^2 + 1^2}{1^2}| + 2tan^{-1}\frac{1}{1} + log1 = c$$

$$c = log2 + \frac{\pi}{2}$$

$$log |\frac{x^2 + y^2}{x^2}| + 2tan^{-1}\frac{y}{x} + 2logx = log2 + \frac{\pi}{2}$$

$$(d) \frac{d^2y}{dx^2} + \lambda^2 y = 0$$

Explanation: Given, $y = asin(\lambda x + \alpha) ...(i)$

On differentiating it w.r.t. x, we get

 $\log|x^2 + y^2| + 2\tan^{-1}\frac{y}{x} = \log 2 + \frac{\pi}{2}$

$$\frac{dy}{dx} = \frac{d}{dx} \operatorname{a} \sin(\lambda x + \alpha)$$

$$= \operatorname{a} \cos(\lambda x + \alpha)\lambda$$

$$\therefore \frac{dy}{dx} = a\lambda \cos(\lambda x + \alpha)$$

Again, differentiating d it w.r.t. x, we get

$$\frac{d^2y}{dx^2} = a\lambda \frac{d}{dx}\cos(\lambda x + \alpha)$$

$$= a\lambda[\sin(\lambda x + \alpha)] \times \lambda$$

$$= -a\lambda^2 \sin(\lambda x + \alpha)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \lambda^2y \text{ [from Eq. (i)]}$$

$$\therefore \frac{d^2y}{dx^2} + \lambda^2y = 0$$

(c)
$$\frac{e^x}{x}$$

Explanation: We have,
$$\frac{dy}{dx} + y = \frac{1+y}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{x} + \frac{y(1-x)}{x}$$

$$\Rightarrow \frac{dy}{dx} - \left(\frac{1-x}{x}\right)y = \frac{1}{x}$$

This is a linear differential equation.

On comparing it with $\frac{dy}{dx} + Py = Q$, we get

$$P = \frac{-(1-x)}{x}, Q = \frac{1}{x}$$

I.F. =
$$e^{\int P dx} = e^{-\int \frac{1-x}{x} dx}$$

$$= e^{x - \log x}$$
 or $\frac{e^x}{x}$

39.

Explanation: Given that, $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$ Let θ be the angle between vector a and b.

Then,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$$

$$\Rightarrow 12 = 10 \times 2\cos\theta$$

$$\Rightarrow \cos\theta = \frac{12}{20} = \frac{3}{5}$$

$$\Rightarrow \sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}}$$

$$\Rightarrow \sin\theta = \pm \frac{4}{5}$$

Now,
$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin\theta$$

$$\Rightarrow |\vec{a} \times \vec{b}| = 10 \times 2 \times \frac{4}{5} = 16.$$

(c) 0

Explanation: $\vec{r} \cdot \vec{a} = 0$

 \Rightarrow either $\vec{a} = 0$ or both are perpendicular to each other.

if \vec{a} , \vec{b} , \vec{c} are zero

$$\Rightarrow [\vec{a}\vec{b}\vec{c}] = 0$$

and

if three vectors are non-zero

 \Rightarrow they are coplanar and perpendicular to \vec{r} .

$$\Rightarrow [\vec{a}\vec{b}\vec{c}] = 0$$

41.

(c) Both I and II

Explanation:

- I. Correct, because in a triangle, a sum of two sides is greater than the third side.
- II. Correct, because in a triangle, a difference of the two sides always smaller than the third side. These two inequality is known as triangle inequality.

42.

(b) 4*OG*

Explanation: Let O be the origin and ABCD is a parallelogram with two diagonals AC and BD.

G is the midpoint of AC

$$\Rightarrow OG = \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2}$$

$$\rightarrow \rightarrow \rightarrow \rightarrow$$
 2OG = OA + OC

G is also the midpoint of BD

$$\Rightarrow OG = \frac{\overrightarrow{OE} + \overrightarrow{OD}}{2}$$

Adding both equations,

$$\rightarrow$$
 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $4OG = OA + OC + OB + OD$

43. **(a)**
$$\frac{|\hat{a}+\hat{b}|}{2}$$

Explanation: Given \hat{a} and \hat{b} are unit vectors.

Now,

$$|\hat{a} + \hat{b}|^2 = (\hat{a} + \hat{b}) \cdot (\hat{a} + \hat{b})$$

= $|\hat{a}|^2 + |\hat{b}|^2 + 2|\hat{a}||\hat{b}|\cos\theta$
 $\Rightarrow |\hat{a} + \hat{b}|^2 = 2 + 2\cos\theta$
= $2(1 + \cos\theta)...(i)$

Similarly,

$$|\hat{a} + \hat{b}|^2 = 2(1 - \cos\theta)....(ii)$$

From Eq. (i)

$$|\hat{a} + \hat{b}|^2 = 2 \times 2\cos^2\left(\frac{\theta}{2}\right)$$

$$|\hat{a} + \hat{b}|^2 = 2\cos\left(\frac{\theta}{2}\right)$$

$$\therefore \cos\left(\frac{\theta}{2}\right) = \frac{|\hat{a} + \hat{b}|}{2}$$

44. **(a)** 2

Explanation: Use this

$$Cos^{2}\alpha + Cos^{2}\beta + Cos^{2}\gamma = 1$$

$$1 \sin^{2}\alpha + 1 \sin^{2}\beta + 1 \sin^{2}\alpha$$

$$1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma = 1$$

= 2

45. (a) A pair of perpendicular planes

Explanation: We have, xy + yz = 0

$$\Rightarrow$$
 y(x + z) = 0

$$\Rightarrow$$
 y = 0 and x + z = 0

Above are equations of planes

Normal to the plane y = 0 is \hat{j}

And normal to the plane x + z = 0 is $\hat{i} + \hat{k}$

$$\operatorname{Now} \hat{j} \cdot (\hat{i} + \hat{k}) = 0$$

So, planes are perpendicular.

46.

(c)
$$(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$$

Explanation: In the Cartesian coordinate system:

Cartesian equation of a plane that passes through the intersection of two given plane is given by:

$$(A_1x + B_1y + C_1z + D_1) + (A_2x + B_2y + C_2z + D_2) = 0$$

 $(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2) = 0$. Which is the required solution.

47. **(a)** $\frac{1}{2}$

Explanation: We have,

$$P(B) = \frac{3}{5}, P(A \mid B) \text{ and } P(A \cup B) = \frac{4}{5}$$

Now, We know that

$$P(A|B) \times P(B) = P(A \cap B)$$

[Property of conditional Probability]

$$\Rightarrow \frac{1}{2} \times \frac{3}{5} = P(A \cap B)$$

$$\Rightarrow P(A \cap B) = \frac{3}{10}$$

Now,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

[Additive Law of Probability]

$$\therefore \frac{4}{5} = P(A) + \frac{3}{5} - \frac{3}{10}$$

$$\Rightarrow P(A) = \frac{4}{5} - \frac{3}{5} + \frac{3}{10}$$

$$\Rightarrow P(A) = \frac{1}{5} + \frac{3}{10}$$

$$\Rightarrow P(A) = \frac{2+3}{10}$$

$$\Rightarrow P(A) = \frac{5}{10} = \frac{1}{2}$$

48. (a)
$$\frac{1}{52}$$

Explanation: Let
$$P(A) = P(scooter) = \frac{2000}{12000} = \frac{1}{6}$$

$$P(B) = P(car) = \frac{4000}{12000} = \frac{1}{3}$$

and P(C) = P (truck) =
$$\frac{6000}{12000} = \frac{1}{2}$$

Let E = Event that person meets with accident.

Then,
$$P\left(\frac{E}{A}\right) = \frac{1}{100}$$
, $P\left(\frac{E}{B}\right) = \frac{3}{100}$, $P\left(\frac{E}{C}\right) = \frac{15}{100}$

: Required probability

$$= \frac{P(A) \cdot P\left(\frac{E}{A}\right)}{P(A) \cdot P\left(\frac{E}{A}\right) + P(B) \cdot P\left(\frac{E}{B}\right) + P(C) \cdot P\left(\frac{E}{C}\right)}$$

$$= \frac{\frac{1}{6} \times \frac{1}{100}}{\frac{1}{6} \times \frac{1}{100} + \frac{1}{3} \times \frac{3}{100} + \frac{1}{2} \times \frac{15}{100}} = \frac{\frac{1}{6}}{\frac{1}{6} + 1 + \frac{15}{2}}$$

$$\frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{6} + \frac{1}{6}} = \frac{1}{52}$$

49.

(d)
$$\frac{37}{256}$$

Explanation: In a single throw, we have $P(H) = \frac{1}{2}$ and $P(\text{ not } H) = \frac{1}{2}$.

:.
$$p = \frac{1}{2}, q = \frac{1}{2}$$
 and $n = 8$

Required probability = P(6 heads or 7 heads or 8 heads)

= P(6 heads) + P(7 heads) + P(8 heads)

$$\begin{split} &= {}^{8}C_{6} \cdot \left(\frac{1}{2}\right)^{6} \cdot \left(\frac{1}{2}\right)^{2} + {}^{8}C_{7} \cdot \left(\frac{1}{2}\right)^{7} \cdot \left(\frac{1}{2}\right)^{1} + {}^{8}C_{8} \cdot \left(\frac{1}{2}\right)^{8} \\ &= \left(\frac{28}{256} + \frac{8}{256} + \frac{1}{256}\right) \\ &= \frac{37}{256}. \end{split}$$

50.

(b)
$$E(X^2) - (E(X))^2$$

Explanation: Since, the variance of a discrete random variable X is given by:

$$Var(X) = E(X^2) - (E(X))^2$$