1. The total number of ion (e)
(1) 2
(3) 4
(B) $16{\mathrm{~g} \text { of } \mathrm{CO}_{2}}^{2}$
(C) 16 g of CO

$$
\Theta
$$

(D) 16 g of H_{2}

0

Choose the correct order from the options given betiow :
(1) (A), (B), (C), (D)
(2) (D), (C), (A), (B)
(3) (B), (A), (D), (C).
(4) (C), (B), (D), (A)
3. A molecule X associates in a given solvent as per the following equation :

$$
\mathrm{X} \rightleftharpoons(\mathrm{X})_{\mathrm{n}}
$$

For a given concentration of X , the van't Hoff farsor was found to be 0.80 and the fraction of associa molecules was 0.3 . The correct value of ' n ' is :
(1) 2
(2)
(2) 3
$n^{(4)} 5$
(3) 1
4. The oxidation number of Co in complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NE}_{2} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
(1) 3
(2) 4
(3) 2
(4) 5
5. The correct structure of dipeptide, Gly-Ala (glycyl alanine) is
, (1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{COOH}$
(2) $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}_{2}$
(3) $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(4) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{COOH}$

total number of ions produced from the comp rex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ in aqueous solution will be

2. Arrange the following in decreasing order of number of molecules contained in
(A) 16 g of O_{2}
(B) 16 g of CO_{2}
(C) 16 g of CO

$$
\leftrightarrow
$$

(D) 16 g of H_{2}

Choose the correct order from the options given below :
(1) (A), (B), (C), (D)
(2) (D), (C), (A), (B)
(3) (B), (A), (D), (C)
(4) (C), (B), (D), (A)
3. A molecule X associates in a given solvent as per the following equation :

$$
\mathrm{X} \rightleftharpoons(\mathrm{X})_{\mathrm{n}}
$$

For a given concentration of X , the van't Hoff factor was found to be 0.80 and the fraction of associate molecules was 0.3 . The correct value of ' n ' is :
(1) 2 ∞

(3) 1

$$
\begin{array}{ll}
\sigma^{(2)} & 3 \\
\left\}^{(4)}\right. & 5
\end{array}
$$

4. The oxidation number of Co in complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
(1) 3
(2) 4
(3) 2
(4) 5
5. The correct structure of dipeptide, Gly-Ala (glycyl alanine) is
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{COOH}$
(2) $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}_{2}$
(3) $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(4) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{COOH}$

$306 \mathrm{E} / \mathrm{A}$

- (3)

1. The total number of ions produced from
(1) 2
(3) 4 ? ${ }^{3}(2)$
(2)
(4)
(B) 16 g of CO_{2}
(C) 16 g of CO
(A) Arange the following in decreasing order of number of molecules contained in :
(A) 16 g of O_{2}
(D) 16 g of H_{2}

Choose the correct order from the options given bextow :
(1) (A), (B), (C), (D)
(2) (D), (C), (A), (B)
(3) (B), (A), (D), (C).
(4) (C), (B), (D), (A)
$\{3$
(C)
\triangleleft
3. A molecule X associates in a given solvent as per the following equation :

$$
\mathrm{X} \rightleftharpoons(\mathrm{X})_{\mathrm{n}}
$$

For a given concentration of X, the van't Hoff factor was found to be 0.80 and the fraction of associa molecules was 0.3 . The correct value of ' n ' is :
(1) 2

(2) 3
(3) 1
$\$^{(4)} 5$
4. The oxidation number of Co in complex $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
(1) 3
(2) 4
(3) 2
(4) 5
5. The correct structure of dipeptide, Gly-Ala (glycyl alanine) is
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{COOH}$
(2) $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}_{2}$
(3) $\mathrm{HOOC}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(4) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{COOH}$
6. The Cu metal crystallises into $f c c$ lattice with a uniticell edge length of 361 pm . The radius of Cu atom is :
(1) 127 pm
(3) 157 pm
(2) 181 pm
(4) 108 pm
7. If 75% of a first order reaction gets completed in 32 minutes, time taken for 50% completion of this reaction is
(1) 16 minutes
(2) 78 minutes
(3) 8 minutes .
(4) 4 minutes
8. Which of the following compounds will be repelled when placed in an external magnetic field ?
(1) $\mathrm{Na}_{2}\left[\mathrm{CuCl}_{4}\right]$
69 (2) $\mathrm{Na}_{2}\left[\mathrm{CdCl}_{4}\right]$
(3) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
cos
© (4) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(3)
9. The spin only magnetic moment of Hexacyanidopnanganate(II) ion is \qquad BM.
(1) 5.90
(2) 1.73
(3) 4.90
(4) 3.87
10. The correct order of increasing boiling points of the following compounds is :

Pentan-1-ol, n-Butane, Pentanal, Ethoxyethane
(1) Ethoxyethane, Pentanal, n-Butane, Pentan-1-ol
(2) Pentanal, n-Butane, Ethoxyethane, Pentan-1 101
(3) n-Butane, Pentanal, Ethoxyethane, Pentan-10 0
(4) n-Butane, Ethoxyethane, Pentanal, Pentan-1 (9)
11. In the following reaction, identify the product D .

(1) o-Nitrobenzoic acid
(2) p-Nitrobenzoic acid
(3) o,p-Dinitrobenzoic acid
(4) m-Nitrobenzoic acid
12. The gold number (4)
A. 0.005 number range of some of the lyophilic colloids is given below
$\mathrm{A}: 0.005-0.01, \mathrm{~B}: 0.15-0.25, \mathrm{C}: 0.04-1.0$ 名 $\mathrm{D}: 15-25$.
Which among these can be used as a better protedtive colloid?
(1) A
(3) (2) B
(3) C
<
(4) D
13. Reaction of aniline with conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will produce 47% of
(1) p-Nitroaniline
(2) o-Nitroaniline
(3) m-Nitroaniline
(4) 2,4-Dinitroaniline
14. What will be increasing order of basic strengthof the following compounds?

1
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}<\mathrm{qe}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
(3) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
(4) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
15. Which of the following compounds will give Hell-Volhard-Zelinsky reaction ?
(1) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH}$ $\stackrel{\infty}{\infty}$
(3) $\mathrm{R}_{2} \mathrm{CO}$
(8) (4) $\mathrm{H}-\mathrm{COOH}$
(2) $\mathrm{R}_{3} \mathrm{C}-\mathrm{CHO}$
16. Arrange the following acids in increasing ordergef their acidic strengths : $\mathrm{HCOOH}, \quad \mathrm{FCH}_{2} \mathrm{COOH}, \mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{COO}, \mathrm{ClCH}_{2} \mathrm{COOH}$
(1) $\mathrm{HCOOH}<\mathrm{FCH}_{2} \mathrm{COOH}<\mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{ClCH}_{2} \mathrm{COOH}$
(2) $\mathrm{HCOOH}<\mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{ClCH}_{2} \mathrm{COOH}<\mathrm{FCH}_{2} \mathrm{COOH}$
(3) $\mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{COOH}<\mathrm{HCOOH}<\mathrm{ClCH}_{2} \mathrm{COOH}<\mathrm{FCH}_{2} \mathrm{COOH}$
(4) $\mathrm{HCOOH}<\mathrm{ClCH}_{2} \mathrm{COOH}<\mathrm{FCH}_{2} \mathrm{COOH}<\mathrm{NO}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
17. In the following compounds, what is the increasing order of their reactivity towards nucleophilic addition reactions?

Benzaldehyde, p-Tolualdehyde, p-Nitrobenzaldehyde, Acetophenone
(1) Benzaldehyde $<$ p-Tolualdehyde $<$ p-Nitrobenzaldehyde $<$ Acetophenone
(2) Acetophenone $<$ Benzaldehyde $<$ p-Tolualdeĥfide $<$ p-Nitrobenzaldehyde
(3) Acetophenone $<$ p-Tolualdehyde $<$ Benzaldebyshe $<$ p-Nitrobenzaldehyde
(4) Benzaldehyde $<$ Acetophenone $<$ p-Tolualdehy de $<$ p-Nitrobenzaldehyde
18. The Gatterman-Koch reaction is used in the industrial preparation of benzaldehyde. The electrophile involved in this reaction is
(3)
(1) CO^{+}
(2) $\mathrm{HCl}+\mathrm{CO}_{2}+$ anhydrous AlCl_{3}
(3) HCO^{+}
(4) $\mathrm{CO}+$ anhydrous AlCl_{3}
19. Formaldehyde undergoes Cannizzaro reaction because
(A) It has alpha-hydrogen atom.
(B) It does not have alpha-hydrogen atom.
\&
(C) It does not undergo self-oxidation and reductio
(D) It undergo self-oxidation and reduction on heating with concentrated alkali.

Choose the correct answer from the options given bellow :
(1) (B) and (D) only
(P) (A) and (C) only.
(3) (B) and (C) only
(A) (A) and (D) only
20. In the reaction, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}+\mathrm{HI} \rightarrow$ Products
$\mathrm{CH}_{3} \mathrm{OH}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}$ are the products and not $\mathrm{CH}_{3} \mathrm{I}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$. It is because,
(A) in step 2 of the reaction the departure of leaving group $\left(\mathrm{HO}-\mathrm{CH}_{3}\right)$ creates less stable carbocation.
(B) in step 2 of the reaction the departure of leavinggroup $\left(\mathrm{HO}-\mathrm{CH}_{3}\right)$ creates more stable carbocation.
(C) the reaction follows $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
(D) the reaction follows $\mathrm{S}_{\mathrm{N}} 2$ mechanism.

Choose the correct answer from the options given betow :
(1) (B) and (D) only
(2) (B) and (C) only
(3) (A) and (D) only
(4) (A) and (C) only
21. Aniline does not undergo Friedel-Crafts reaction because

1 (A) It forms salt with the Lewis acid catalyst, AlCl_{3}.
(B) Nitrogen of aniline acquires negative charge.
(C) Nitrogen of aniline acquires positive charge.
(D) Nitrogen acts as a strong deactivating group in the further reaction.

Choose the correct answer from the options given below :
(1) (A), (B) and (D) only.
(2) (A), (B) and (C) only .
(3) (A), (C) and (D) only
(4) (B), (C) and (D) only
22. Although chlorine is an electron withdrawing group, yet it is ortho- and para-directing in electrophilic aromatic substitution reaction because
(A) Chlorine withdraws electrons through inductive effect.
(B) Chlorine destabilises the intermediate carbocation formed during electrophilic substitution.
(C) Chlorine accepts electrons through resonance f
(D) Chlorine releases electrons through resonance

Choose the correct answer from the options given below :
(1) (A), (B) and (D) only
(2) (A), (B) and (C) only

(3) (A), (C) and (D) only +
(4) (B), (C) and (D) only +
23. In Etard reaction, the final product is
(1) Aromatic aldehyde •/ 6

1
(2) Aromatic chloride
(3) Aromatic amine
(4) Aromatic alcohol
24. Match List-I with List-II :

	List-I	
List-II		
(A)	Amino acids linked in a specific sequence	(I) Primary structure of proteins
(B)	Regular folding of a specific sequence of amino acids due to H-bonding	(II) Secondary structure of proteins
(C)	Fibrous proteins	(III) Quaternary structure of proteins
(D)Spatial arrangement of two or more polypeptide chains	(H) (H) Tertiary structure of proteins (\%	

Choose the correct answer from the options given below :
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(2) (A) - (I), (B) - (III), (C) - (II), (D) - (IV)-
(3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
25. Match List-I with List-II :

Choose the correct answer from the options given below :
(1) (A) - (III), (B) - (IV), (C) - (II), (D) - (I),
(2) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)'
(3) (A) - (I), (B) - (IV), (C) - (II), (D) - (III)
(4) (A) - (III), (B) - (I), (C) - (IV), (D) - (II),
26. Match List-I with List-II :

List-I		List-II	
(A)	Swarts Reaction	(I)	
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{NaNO}_{2}+\mathrm{HX}+\mathrm{Cu}_{2} \mathrm{X}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}+\mathrm{N}_{2}$			
(B)	Finkelstein reaction	(II)	
$2 \mathrm{RX}+2 \mathrm{Na} \rightarrow \mathrm{R}-\mathrm{R}+2 \mathrm{NaX}$			
(C)	Sandmeyer's reaction	(III)	
$\mathrm{RX}+\mathrm{AgF} \rightarrow \mathrm{R}-\mathrm{F}+\mathrm{AgX}$			
(D)	Wurtz reaction	(IV)	
	$\mathrm{RX}+\mathrm{NaI} \rightarrow \mathrm{R}-\mathrm{I}+\mathrm{NaX}$		

Choose the correct answer from the options givengelow :
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(2) (A) - (I), (B) - (III), (C) - (II), (D) - (IV)
(3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
27. Match List-I with List-II :

List-I (Biomolecule)			List-II (Function/Diseases)
(A)	Vitamin A	(I)	Menstryal cycle
(B)	Thiamine	(II)	Xerophthalmia
(C)	Glucocorticoids	(III)	Beri-Beri
(D)	Estradiol	(IV)	Addison's disease

Choose the correct answer from the options given'below :
(1) (A) - (III), (B) - (II), (C) - (I), (D) - (IV)
(2) (A) - (II), (B) - (III), (C) - (I), (D) - (IV)
(3). (A) - (III), (B) - (II), (C) - (IV), (D) - (I)
(4) (A) - (II), (B) - (III), (C) - (IV), (D) - (I)
28. In the following table, match the reactants given in List-I with the correct product in List-II as per the reaction of hydration of alkene under acidic condition.

Choose the correct answer from the options given below :
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(2) (A) - (I), (B) - (III), (C) - (II), (D) - (IV)
(3) (A) - (II), (B) - (I), (C) - (IV), (D) - (III)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
29. Which among the following is not an Analgesic?
(1) Morphene
(2) Heroin
(3) Codeine
(2) Ranitidine
30. The increasing order of acidity of the following conffunds based on pKa values is
(A) $\mathrm{BrCH}_{2} \mathrm{COOH}$
$\mathrm{ClCH}_{2} \mathrm{COOH}$
(C) $\mathrm{FCH}_{2} \mathrm{COOH}$
(a) HCOOH

1
Choose the correct answer from the options given betw :
(1) $($ D) $<$ (A) $<$ (B) $<$ (C) .
(2) (A) $<$ (D) $<$ (C) $<$ (B)
(3) (B) $<$ (A) $<$ (D) $<$ (C)
(4) (C) $<$ (B) $<$ (D) $<$ (A)
31. For $\mathrm{S}_{\mathrm{N}^{2}}$ reaction, the increasing order of the reactivity
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$
(C) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
(D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$
Choose the correct answer from the options gifent below :
(1) (A) $<$ (B) $<$ (C) $<$ (D)
(3) (B) $<$ (A) $<$ (D) $<$ (C)
(2) (A) $<$ (C) $<$ (B) $<$ (D)
(4) (C) $<$ (B) $<$ (D) $<$ (A)

Read the following passage and answer the next fiyequestions based on it.

Battery or cell converts chemical energy of theyedox reaction to electrical energy. In fuel cell (a galvani cell), the chemical energy of combustion of fuels like H_{2}, ethanol, etc. are directly converted to electrica energy. In a fuel cell, H_{2} and O_{2} react to produce electricity, where H_{2} gas is oxidised at anode and oxyg is reduced at cathode and the reactions involved are

$$
\begin{array}{r}
\text { Anode reaction : } \mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \\
\text {Cathode reaction : } \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-\infty} 4 \mathrm{OH}^{-} \\
\text {67.2 L of } \mathrm{H}_{2} \text { at } \mathrm{STP} \text { reacts in } 15 \text { minutes. }
\end{array}
$$

32. The number of moles of hydrogen oxidised is :
(1) 0.33 moles
(2) 33.3 moles
(3) 3.0 moles
(4) 1.33 moles
(1) 2 moles
(1) 96500 C
33. If the entire current of silver deposited will be (3)
(1)
(2) 648 g
(3) 108 g solution, th
SPACE FOR ROUGH WORK
(4) 216 g
34. The source of electrical energy on the Apollo moon flight was :
(1) Lead storage battery
(2) A generator set
(3) $\mathrm{Ni}-\mathrm{Cd}$ cells
(4) $\mathrm{H}_{2}-\mathrm{O}_{2}$ Fuel cell.

Read the following passage and answer the next five questions based on it.

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
La	Hf	Ta	W	Re	Os	Ir	Pt	AtP	Hg
In any transition									

In any transition series, as we move from leffifo right the d-orbitals are progressively filled and their properties vary accordingly.
Ce $\operatorname{Pr} \mathrm{Nd} \mathrm{Pm} \mathrm{Sm} \mathrm{Eu} \mathrm{Gd} \mathrm{Tb}$ Dy Ho En Tm Yb Lu
Th Pa U Np Pu Am Cm Bk Cf Es fin Md No Lr
The above are the two series of f-block elementsion which the chemical properties won't change much. The $5 f$-series elements are radioactive in nature and mostly are artificially synthesized in laboratories and thus much is not known about their chemical properties.
37. Identify the incorrect statement.

1. (1) Second ionisation enthalpy of Ag is greater than second ionisation enthalpy of Pd.
(2) Zr and Hf shares almost identical nuclear properties.
(3) Melting point of Mn is lower than that of Ci
(4) Interstitial compounds are non-stoichiometrif and neither ionic nor covalent in nature.
2. Which of the following is the correct order of segond ionisation enthalpy?
(1) $\mathrm{V}>\mathrm{Cr}>\mathrm{Mn}$
(2) $\mathrm{V}<\mathrm{Cr}<\mathrm{Mn}$
(3) $\mathrm{V}<\mathrm{Cr}>\mathrm{Mn}$ 。
(4) V $>\mathrm{Cr}<\mathrm{Mn}$
3. Which of the following pair of compounds exhiblds same colour in aqueous solution ?
(1) $\mathrm{FeCl}_{2}, \mathrm{CuCl}_{2}$
(2) $\mathrm{VOCl}_{2}, \mathrm{CuCl}_{2}$.
(3) $\mathrm{VOCl}_{2}, \mathrm{FeCl}_{2}$
(4) $\mathrm{VOCl}_{2}, \mathrm{MnCl}_{2}$
4. Which metal has the highest oxidation state in the first row transition series ?
(1) Cr .
(2) Fe
(3) Mn
(4) V
5. Why do the actinoids exhibit higher number of gxdation states than lanthanoids?

(1) 4 f orbitals are more diffused than the 5 orblials.
(2) Energy difference between 5 f and 6 d is lesfwith respect to the energy difference between 4 f and 5 d .
(3) Energy difference between 5 f and 6 d is more with respect to the energy difference between 4 f and 5 d .
(4) Actinoids are more reactive in nature than (h) lanthanoids.
6. Camphor in nitrogen gas is a type of solution
(1) Gas - Gas
(2) Solid-Gas
(3) Liquid-Gas
(4) Solid-Liquid
7. Identify the correct order of organic compounds in the following chemical reaction :

$$
\xrightarrow[?]{?}+\mathrm{Mg} \xrightarrow{\text { Dry Ether }} ? \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \xrightarrow{?} \xrightarrow{\mathrm{Cl}_{2}, \Delta} \xrightarrow{\Delta}
$$

(A) $\mathrm{CH}_{3} \mathrm{MgBr}$
(C) $\mathrm{CH}_{3} \mathrm{Cl}$
(D) CH_{4}

Choose the correct answer from the options given below :
(1)
(B), (A), (D), (C)
(2) (A), (C), (B), (D)
(3) (B), (A), (C), (D)
(4) (C), (B), (D), (A) ∞
44. Consider the following statements regarding osmotic pressure :
(A) Molar mass of a protein can be determined using (Botic pressure method.

1 (B) The osmotic pressure is proportional to the molarity.
(C) Reverse osmosis occurs when a pressure larger (a) osmotic pressure is applied to the concentrated solution side.
cells as a result of osmosis.
Choose the correct statements with reference to osmotic pressure :
(1)
(A), (B) and (D) only
(2) (A), (B) and (C) only
(3) (A), (B), (C) and (D)
(4) $(\mathrm{B}),(\mathrm{C})$ and (D) only
45. Vapour pressures of pure liquids ' A ' and ' D ' at $50^{\circ} \mathrm{C} 500 \mathrm{~mm} \mathrm{Hg}$ and 800 mm Hg respectively. The
binary solution solution is :
(1) 33.33 mole percent
(3) 25.75 mole percent
46. For the following reaction :
, $2 \mathrm{~A}_{2}(\mathrm{~g})+\frac{1}{4} \mathrm{X}(\mathrm{g}) \rightarrow 2 \mathrm{~A}_{2} \mathrm{X}(\mathrm{g})$ volume is increased to double its value by decreasing the pressure on it. If the reaction is first order with respect to X and second order with respect to A_{2}, the rate of reaction will :
(1) Decrease by eight times of its initial value
(2) Increase by eight times of its initial value
(3) Increase by four times of its initial value
(4) Remain unchanged
(4)
∞
47. The total number of sigma bonds present ind ${ }_{4}^{\circ} \mathrm{O}_{10}$ are :
(1) 6 ,
(3) 16
(2) 7
(4) 17
48. In the electrolysis of alumina to obtain Aluminium metal, the cryolite is added mainly to
(1) lower the melting point of alumina.
(2) dissolve the alumina in the molten cryolite.
(3) remove the impurities of alumina.
(4) increase the electrical conductivity. .
49. Identify the order of reaction if its rate constant is $\mathrm{k}=2 \times 10^{-2} \mathrm{~s}^{-1}$.
(1) Zero order
(2) First order
(3) Second order
(4) Half order
50. For a complex reaction, the order of reaction is equal to
(1) Sum of stoichiometric coefficients in balanced chemical reaction
(2) The molecularity of overall reaction
(3) Order of fastest step of the reaction
(4) The molecularity of slowest step of reaction

