INSTRUCTIONS

This question paper contains total 150 questions divided into four parts:
Part I : Physics Q. No. 1 to 40
Part II : Chemistry Q. No. 41 to 80
Part III : (A) English Proficiency Q. No. 81 to 95
(B) Logical Reasoning Q. No. 96 to 105

Part IV : Mathematics Q. No. 106 to 150

All questions are multiple choice questions with four options, only one of them is correct.
Each correct answer awarded 3 marks and -1 for each incorrect answer.

PART - I : PHYSICS

1. Four point charges $Q,-q, 2 q$ and $2 Q$ are placed, one at each corner of the square. The relation between Q and q for which the potential at the centre of the square is zero is :
(a) $Q=-q$
(b) $Q=-\frac{1}{q}$
(c) $Q=q$
(d) $Q=\frac{1}{q}$

Duration of paper-3 Hours
2. Two long parallel wires carry equal current i
4.
fl owing in the same direction are at a distance 2 d apart. The magnetic field B at a point lying on the perpendicular line joining the wires and at a distance x from the midpoint is -

(a)
(c) moix
m id
(d) $\begin{gathered}0 \\ \left(d^{2}+x^{2}\right)\end{gathered}$

(a) $\frac{E}{R 太 \sqrt{C}}$
(b) $\frac{E R}{2 \sqrt{L C}}$
(c) $\frac{E L \sqrt{C}}{2 R}$
(d) $\frac{E L \sqrt{C}}{R}$
3. In the circuit shown, the symbols have their usual meanings. The cell has emf E. X is initially joined to Y for a long time. Then, X is joined to Z. The maximum charge on C at any later time will be
A point object O is placed in front of a glass rod having spherical end of radius of curvature 30 cm . The image would be formed at

(a) 30 cm left
(b) infinity
(c) 1 cm to the right
(d) 18 cm to the left

In Young's double slit experiment, $I=500 \mathrm{~nm}$, $\mathrm{d}=1 \mathrm{~mm}, \mathrm{D}=1 \mathrm{~m}$. Minimum distance from the central maximum for which intensity is half of the maximum intensity is
(a) $2.5 \times 10-4 \mathrm{~m}$
(b) $1.25 \times 10-4 \mathrm{~m}$
(c) $0.625 \times 10-4 \mathrm{~m}$
(d) $0.3125 \times 10-4 \mathrm{~m}$
6. What is the voltage gain in a common emitter amplifier, where input resistance is 3 W and load resistance $24 \mathrm{~W}, \mathrm{~b}=0.6$?
(a) 8.4
(b) 4.8
(c) 2.4
(d) 480
7. The acceleration due to gravity on the surface of the moon is $1 / 6$ that on the surface of earth and the diameter of the moon is one-fourth that of earth. The ratio of escape velocities on earth and moon will be
$\frac{\sqrt{6}}{2}$

24 (c)
c)
3 (d)
2
8. Given $P=2^{\wedge} \mathrm{i}-3^{\wedge} \mathrm{j}+4 \mathrm{k}^{\wedge}$ and $\mathrm{Q}=-^{\wedge} \mathrm{j} 2 \mathrm{k}^{\wedge}$. The magnitude of their resultant is
(a) $\sqrt{3}$
(b) $2 \sqrt{3}$
(c) $3 \sqrt{3}$
(d) $\sqrt{4} 3$
9. A particle of mass m executes simple harmonic motion with amplitude a and frequency n . The average kinetic energy during its motion from the position of equilibrium to the end is
(a) $2 \mathrm{p} 2 m a 22 \mathrm{n}$
(b) $\mathrm{p}^{2} m a^{22} \mathrm{n}$
$\begin{array}{ll}- & 122 n(d) 4 p 2 m a 22 n(c) m a \\ 4 & \end{array}$
10. The dipole moment of the given charge distribution is
(a) $-\overline{4 R q}{ }^{\wedge} \mathrm{ip}$
(b)

$$
2 \mathrm{Rqq}^{\hat{i}}
$$

(d) $\quad \frac{2 R q}{} \hat{i}$
(c) -

p

p
11. At a place, if the earth $\$$ s horizontal and vertical components of magnetic fields are equal, then the angle of dip will be
(a) 30°
(b) 90°
(c) 45°
(d) 0°
12. The third line of Balmer series of an ion equivalnet to hydrogen atom has wavelength of 108.5 nm . The ground state energy of an electron of this ion will be
(a) 3.4 eV
(b) 13.6 eV
(c) 54.4 eV
(d) 122.4 eV
13. The binding energy per nucleon of ${ }^{10} \mathrm{X}$ is 9 MeV and that of ${ }^{11} \mathrm{X}$ is 7.5 MeV where X represents an element. The minimum energy required to
remove a neutron from ${ }^{11} \mathrm{X}$ is
(a) 7.5 MeV
(b) 2.5 MeV
(c) 8 MeV
(d) 0.5 MeV
14. If C, the velocity of light, g the acceleration due to gravity and P the atmospheric pressure be the fundamental quantities in MKS system, then the dimensions of length will be same as that of
C
C
C2
(a) $-g$
(b) $_P$
(c) $\operatorname{PCg}(\mathrm{d})$
15. Figure shows a capillary rise H . If the air is blown through the horizontal tube in the direction as
shown then rise in capillary tube will be
(a) $=\mathrm{H}(\mathrm{b})>\mathrm{H}(\mathrm{c})<\mathrm{H}$
(d) zero
16. A boy running on a horizontal road at 8
 km / h finds the rain falling vertically. He increases his speed to $12 \mathrm{~km} / \mathrm{h}$ and finds that the drops makes 30° with the vertical. The speed of rain with respect to the road is
(a) $4 \sqrt{7} \mathrm{~km} / \mathrm{h}$
(b) $\quad 9 \sqrt{7 m} / \mathrm{h}$
(c) $12 \sqrt{7} \mathrm{~km} / \mathrm{h}$
(d) $15 \sqrt{7} \mathrm{~km} / \mathrm{h}$
17. A hunter aims his gun and fires a bullet directly at a monkey on a tree. At the instant the bullet leaves the barrel of the gun, the monkey drops. Pick the correct statement regarding the situation.
(a) The bullet will never hit the monkey
(b) The bullet will always hit the monkey
(c) The bullet may or may not hit the monkey
(d) Can't be predicted
18. A particle of mass m_{1} moving with velocity v collides with a mass m_{2} at rest,
then they get embedded. Just after collision, velocity of the
system
(a) increases
(b) decreases
(c) remains constant
(d) becomes zero

$$
\mathrm{C}^{\mathrm{p}}=
$$

19. The ratio of the specific heats of a gas is
C_{v}
1.66 , then the gas may be
(a) CO_{2}
(b) He
(c) H_{2}
(d) NO_{2}
20. Two oscillators are started simultaneously in same phase. After 50 oscillations of one, they get out of phase by p , that is half oscillation. The percentage difference of frequencies of the two oscillators is nearest to
(a) 2%
(b) 1%
(c) 0.5%
(d) 0.25%
21. A juggler keeps on moving four balls in the air throwing the balls after intervals. When one ball leaves his hand (speed $=20 \mathrm{~ms}^{-1}$) the position of other balls (height in m) will be (Take $g=10 \mathrm{~ms}^{-2}$)
(a) $10,20,10$
(b) $15,20,15$
(c) $5,15,20$
(d) $5,10,20$
22. If a stone of mass 0.05 kg is thrown out a window of a train moving at a constant speed of $100 \mathrm{~km} / \mathrm{h}$ then magnitude of the net force acting on the stone is
(a) 0.5 N
(b) zero
(c) 50 N
(d) 5 N
23. A body of mass M hits normally a rigid wall with velocity V and bounces back with the same velocity. The impulse experienced by the body is
(a) MV
(b) 1.5 MV
(c) 2 MV
(d)zero
24. A hoop rolls down an inclined plane. The fraction of its total kinetic energy that is associated with rotational motion is
(a) $1: 2$
(b) $1: 3$
(c) $1: 4$
(d) $2: 3$
25. Infinite number of masses, each 1 kg are placed along the x -axis at $x= \pm 1 m, \pm 2 m, \pm 4 m, \pm 8 m, \pm 16 m \ldots .$. the magnitude of the resultant gravitational potential in terms of gravitational
constant G at the orgin $(x=0)$ is
(a) $G / 2$
(b) G
(c) $2 G$
(d) $4 G$
26. Water of volume 2 litre in a container is heated with a coil of 1 kW at $27^{\circ} \mathrm{C}$. The lid of the container is open and energy dissipates at rate of $160 \mathrm{~J} / \mathrm{s}$. In how much time temperature will rise from $27^{\circ} \mathrm{C}$ to $77^{\circ} \mathrm{C}$?
[Given specific heat of water is $4.2 \mathrm{~kJ} / \mathrm{kg}$]
(a) 8 min 20 s
(b) $6 \min 2 \mathrm{~s}$
(c) 7 min
(d) 14 min
27. In the following $P-V$ diagram of an ideal gas, two adiabates cut two isotherms at T_{1} $=300 \mathrm{~K}$ and $T_{2}=200 \mathrm{~K}$. The value of $V_{A}=$ 2 unit, $V_{B}=8$ unit, $V_{C}=16$ unit. Find the value of V_{D}.

(a) 4 unit
(b) <4 unit
(c) >5 unit
(d) 5 unit
28. The mass of H_{2} molecule is $3.32 \times 10^{-24} \mathrm{~g}$. If 10^{23} hydrogen molecules per second strike $2 \mathrm{~cm}^{2}$ of wall at an angle of 45° with the normal, while moving with a speed of $10^{5} \mathrm{~cm} / \mathrm{s}$, the pressure exterted on the wall is nearly.
(a) $1350 \mathrm{~N} / \mathrm{m}^{2}$
(b) $2350 \mathrm{~N} / \mathrm{m}^{2}$
(c) $3320 \mathrm{~N} / \mathrm{m}^{2}$
(d) $1660 \mathrm{~N} / \mathrm{m}^{2}$
29. The wavelength of two waves are 50 and 51 cm respectively. If the temperature of the room is
$20^{\circ} \mathrm{C}$ then what will be the number of beats produced per second by these waves, when the speed of sound at $0^{\circ} \mathrm{C}$ is $332 \mathrm{~m} / \mathrm{s}$?
(a) 24
(b) 14
(c) 10
(d) None of
these
30. The figure shows the interference pattern obtained in a double-slit experiment using light of wavelength $600 \mathrm{~nm} .1,2,3,4$ and 5 are marked on five fringes. The third order bright fringe is
(a) 2
(b) 3
(c) 4
(d) 5
31. Electric potential at any point is $V=-5 x+$ $3 y$
$+\sqrt{5 z}$, then the magnitude of the electric field is
(a) $3 \sqrt{2}$
(b) $4 \sqrt{2}$
(c) $5 \sqrt{2}$
(d) 7
32. Seven resistances, each of value 20 W , are connected to a 2 V battery as shown in the figure.
The ammeter reading will be

(a) $1 / 10 \mathrm{~A}$ (b) $3 / 10 \mathrm{~A}$ (c) $4 / 10 \mathrm{~A}$ (d) $7 / 10 \mathrm{~A}$. 33. The variation of magnetic susceptibility (c) with temperature for a diamagnetic substance is best represented by
(a)

(c)(d)

OT

OT
34. A copper rod of length ℓ rotates about its end with angular velocity w in uniform magnetic field B. The emf developed between the ends of the rod if the field is normal to the plane of rotation is
(a) $B \mathrm{w} \ell^{2}$
(b)
$\frac{1}{2} B \mathrm{w} \ell^{2}$
(c) $2 B \mathrm{w} \ell^{2}$
(d) $\frac{1}{4} B \mathrm{w} \ell^{2}$
35. A 10 V battery with internal resistance 1 W and a 15 V battery with internal resistance 0.6 W are connected in parallel to a voltmeter (see figure). The reading in the voltmeter will be close to :
(a) $12.5 \mathrm{~V}^{10 \mathrm{~V}}$
(b) 24.5 V
(c) 13.1 V
(d) 11.9 V

36. 10 forks are arranged in increasing order of frequency in such a way that any two nearest tuning forks produce 4 beats $/ \mathrm{sec}$. The highest frequency is twice of the lowest. Possible highest and the lowest frequencies (in Hz) are
(a) 80 and 40
(b)
100 and 50
(c) 44 and 22
(d) 72 and 36
37. A charged particle enters in a uniform magnetic field with a certain velocity. The power delivered to the particle by the magnetic field depends on
(a) force exerted by magnetic field and velocity of the particle.
(b) angular speed W and radius r of the circular
path.
(c) angular speed w and acceleration of the particle.
(d) None of these
38. A resistor and an inductor are connected to an ac supply of 120 V and 50 Hz . The current in the circuit is 3 A . If the power consumed in the circuit is 108 W , then the resistance in the circuit is
(a) 12 W (b) 40 W
(c) $\sqrt{\left(52^{\prime} \mathrm{W} 25\right)}$
(d) 360 W
39. In an electron gun, the potential difference between the filament and plate is 3000 V . What will be the velocity of electron emitting from the gun?
(a) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(b) $\quad 3.18 \times 10^{7}$
m / s
(c) $3.52 \times 10^{7} \mathrm{~m} / \mathrm{s}$
(d) 3.26×10^{7}
m/s
40. A radioactive substance with decay constant of $0.5 \mathrm{~s}^{-1}$ is being produced at a constant rate of 50 nuclei per second. If there are no nuclei present initially, the time (in second) after which 25 nuclei will be present is
(a) 1
(b) $\ln 2$
(c) $\ln (4 / 3)$
(d) $2 \ln$ (4/3)

PART - II : CHEMISTRY

41. The 25 mL of a 0.15 M solution of lead nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ reacts with all of the aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, present in 20 mL of a solution. What is the molar concentration of the
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} ?$
$3 \mathrm{PbNO}\left({ }_{32}(\mathrm{aq})+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})^{3 / 4}{ }^{3} / 4 \mathrm{~B} 3 \mathrm{PbSO}_{4}(\mathrm{~s})\right.$

$$
+2 \mathrm{AlNO}\left({ }_{3}\right)_{3}(\mathrm{aq})
$$

(a) $6.25 \times 10^{-2} \mathrm{M}$
(b) $\quad 2.421 \times 10^{-2} \mathrm{M}$
(c) 0.1875 M
(d) None of these
42. $100 \mathrm{~mL} \mathrm{O}_{2}$ and H_{2} kept at same temperature and pressure. What is true about their number of molecules (a) $\mathrm{NO}_{2}>\mathrm{NH}_{2}$
(b) $\mathrm{NO}_{2}<\mathrm{NH}_{2}$
(c) $\mathrm{NO}_{2}=\mathrm{NH}_{2}$
(d) $\mathrm{NO}_{2}+\mathrm{NH}_{2}=1$ mole
43. If the Planck's constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}$, the de Broglie wavelength of a particle having momentum of $3.3 \times 10^{-24} \mathrm{~kg} \mathrm{~ms}^{-1}$ will be
(a) $0.002 \AA$ (b) $0.5 \AA$
(c) 2
(d) $500 \AA$
44. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?
(a) $[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
(b) $\quad[\mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{3}$
(c) $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
(d) $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
45. Which of the following is the correct and increasing order of lone pair of electrons on the central atom?
(a) $\mathrm{IF}_{7}<\mathrm{IF}_{5}<\mathrm{ClF}_{3}<\mathrm{XeF}_{2}$
(b) $\mathrm{IF}_{7}<\mathrm{XeF}_{2}<\mathrm{ClF}_{2}<\mathrm{IF}_{5}$
(c) $\mathrm{IF}_{7}<\mathrm{ClF}_{3}<\mathrm{XeF}_{2}<\mathrm{IF}_{5}$
(d) $\mathrm{IF}_{7}<\mathrm{XeF}_{2}<\mathrm{IF}_{5}<\mathrm{ClF}_{3}$
46. According to molecular orbital theory which of the following statement about the magnetic
character and bond order is correct regarding $\mathrm{O}^{+}{ }_{2}$
(a) Paramagnetic and Bond order $<\mathrm{O}_{2}$
(b) Paramagnetic and Bond order $>\mathrm{O}_{2}$
(c) Diamagnetic and Bond order $<\mathrm{O}_{2}$
(d) Diamagnetic and Bond order $>\mathrm{O}_{2}$
47. If V is the volume of one molecule of gas under given conditions, the van der Waal's constant b is

$$
4 \mathrm{~V} \mathrm{~N}_{0}
$$

(a) 4 V
(b) \qquad
(c)
$4 \mathrm{NV}^{0}$
(d) $4 \mathrm{VN}_{0}$
48. For vaporization of water at 1 atmospheric pressure, the values of DH and DS are $40.63 \mathrm{kJmol}^{-1}$ and 108.8
$\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. The temperature when Gibbs energy change (DG) for this transformation will be zero, is:
(a) 293.4 K
(b) 273.4 K
(c) 393.4 K
(d) 373.4 K
49. For the reaction taking place at certain temperature
 $\mathrm{CO}_{2}() \mathrm{g}$, if equilibrium pressure is 3 X bar then ${ }_{\mathrm{r}} \mathrm{G}^{\circ}$ would be
(a) $-\mathrm{RT} \ln 9-3 \mathrm{RT} \ln \mathrm{X}$
(b) $\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}$
(c) $-3 R T \ln \mathrm{X}$
(d) None of these
50. The pH of 0.1 M solution of the following salts increases in the order :
(a) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}$
$<\mathrm{HCl}$ (b) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<$
$\mathrm{NaCl}<\mathrm{NaCN}$ (c) $\mathrm{NaCN}<$
$\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
(d) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
51. When $\mathrm{N}_{2} \mathrm{O}_{5}$ is heated at certain temperature, it dissociates as
$\mathrm{N} \mathrm{O}_{25}\left(^{\mathrm{g}}\right)$)
2.5. At the same time $\mathrm{N}_{2} \mathrm{O}_{3}$ also decomposes as :
$\mathrm{N} \mathrm{O}_{23}(\mathrm{~g})$) initially
4.0 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ are taken in 1.0 litre flask and allowed to dissociate. Concentration of O_{2} at equilibrium is 2.5
M. Equilibrium concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is :
(a) 1.0 M
(b) 1.5 M
(c) 2.166 M
(d) 1.846 M
52. Consider the reactions (A) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{HI} ®$ $\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2}{ }^{\circledR} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$ Which of the following statements is
correct about $\mathrm{H}_{2} \mathrm{O}_{2}$ with reference to these reactions? Hydrogen peroxide is \qquad -
(a) an oxidising agent in both (A) and (B)
(b) an oxidising agent in (A) and reducing agent in (B)
(c) a reducing agent in (A) and oxidising agent in (B)
(d) a reducing agent in both (A) and (B)
53. Following are colours shown by some alkaline earth metals in flame test. Which of the following are not correctly matched?

Metal

(i) Calcium
(ii) Strontium
(iii) Barium
(a) (i) and (iii)
(c) (ii) only
(d) (ii) and (iii)

Colour
54. Beryllium shows diagonal relationship with aluminium. Which of the following similarity is incorrect?
(a) Be forms beryllates and Al forms aluminates
(b) $\mathrm{Be}(\mathrm{OH})_{2}$ like $\mathrm{Al}(\mathrm{OH})_{3}$ is basic.
(c) Be like Al is rendered passive by HNO_{3}.
(d) $\mathrm{Be}_{2} \mathrm{C}$ like $\mathrm{Al}_{4} \mathrm{C}_{3}$ yields methane on hydrolysis.
55. An element X occurs in short period having configuration $n s^{2} n p^{1}$. The formula and nature of its oxide is
(a) XO_{3}, basic
(b) XO_{3}, acidic
(c) $\mathrm{X}_{2} \mathrm{O}_{3}$, amphoteric
(d) $\mathrm{X}_{2} \mathrm{O}_{3}$, basic
56. Which of the following is strongest nucleophile
(a) Br^{-}
(b) $: \mathrm{OH}^{-}$
(c) $: \mathrm{CN}-$
(d) CHHO_{-25}^{-}
57. The IUPAC name of the compound is

(a) 3,3-dimethyl-1-cyclohexanol
(b) 1, 1-dimethyl-3-hydroxy cyclohexane (c)

3, 3-dimethyl-1-hydroxy cyclohexane
(d) 1,1-dimethyl-3-cyclohexanol
58. Which of the following will have a meso-isomer also? (a) 2, 3-Dichloropentane
(b) 2, 3-Dichlorobutane
(c) 2-Chlorobutane
(d) 2-Hydroxypropanoic acid
59. In a set of reactions, ethylbenzene yielded a product D .

$\mathrm{CHCH} 233 / 43 / 43 / 4{ }^{\text {® }} \mathrm{KMnOKOH}_{4}$
B $3 / 43 / 4 \circledR^{\circledR} \mathrm{FeClBr} 23$

C $3 / 43 / 43 / 4 ® \mathrm{CHOH}_{25 \mathrm{H}^{+}} \quad \mathrm{D}$

(b)

Br

$\mathrm{CH}_{2} \mathrm{COOCH}_{2} \quad 5$

(c)
 OCH CH 2 3
(d)

60. Identify the incorrect statement from the following:
(a) Ozone absorbs the intense ultraviolet radiation of the sun.
(b) Depletion of ozone layer is because of its chemical reactions with chlorofluoro alkanes.
(c) Ozone absorbs infrared radiation.
(d) Oxides of nitrogen in the atmosphere can cause the depletion of ozone layer.
61. Each edge of a cubic unit cell is 400 pm long. If atomic mass of the element is 120 and its density is $6.25 \mathrm{~g} / \mathrm{cm}^{3}$, the crystal lattice is: (use $\mathrm{N}_{\mathrm{A}}=6 \times$ 10^{23})
(a) primitive
(b) body centered
(c) face centered
(d) end centered
62. Chloroform, CHCl_{3}, boils at $61.7^{\circ} \mathrm{C}$. If the K_{b} for chloroform is $3.63^{\circ} \mathrm{C} / \mathrm{molal}$, what is the boiling point of a solution of 15.0 kg of CHCl_{3} and 0.616 kg of acenaphthalene, $\mathrm{C}_{12} \mathrm{H}_{10}$?
(a) 61.9
(b) 62.0
(c) 52.2
(d) 62.67
63. pH of a 0.1 M monobasic acid is found to be 2 . Hence, its osmotic pressure at a given temperature TK is
(a) 0.1 RT (b)
0.11 RT
(c) 1.1 RT (d) 0.01 RT 64 . On passing a current of 1.0 ampere for 16 min and 5 sec through one litre solution of CuCl_{2}, all copper of the solution was deposited at cathode. The strength of CuCl_{2} solution was (Molar mass of $\mathrm{Cu}=$ 63.5; Faraday constant $=96,500 \mathrm{Cmol}^{-1}$)
(a) 0.01 N
(b) 0.01 M
(c) 0.02 M
(d) 0.2 N
65. A 100.0 mL dillute solution of Ag^{+}is electrolysed for 15.0 minutes with a current of 1.25 mA and the silver is removed completely. What was the initial $\left[\mathrm{Ag}^{+}\right]$?
(a) 2.32×10^{-1}
(b) $\quad 2.32 \times 10^{-4}$
(c) 2.32×10^{-3}
(d) 1.16×10^{-5}
66. The accompanying figure depicts a change in concentration of species A and B for the reaction A ${ }^{\circledR} \mathrm{B}$, as a function of time. The point of inter section of the two curves represents

(a) $t_{1 / 2}$
(b) $t 3 / 4$
(c) $t 2 / 3$
(d) Data insufficient to predict
67. The rate constant of a reaction is 1.5×10^{-3} at $25^{\circ} \mathrm{C}$ and 2.1×10^{-2} at $60^{\circ} \mathrm{C}$. The activation energy is

$$
35 \quad 2.110^{\prime-2}
$$

(a) -333 R loge $1.510^{\prime}-2$
(b) $\frac{298 \times 3.33}{35} \quad \mathrm{R} \log _{\mathrm{e}-} 1.21$
(c) $\frac{298 \times 333}{35}$ R loge 2.1
298×333
2.1
(d)

68. Freundlich equation for adsorption of gases (in amount of $x \mathrm{~g}$) on a solid (in amount of $m \mathrm{~g}$) at constant temperature can be expressed as
(a) $\underline{\log x=\log \bar{p}+{ }^{1} \log K . ~(a)}$
$\begin{array}{cc}m & n \\ \text { (b) } \quad \frac{x}{l} & \overline{1} \\ \log & =\log K+\log p m n\end{array}$
(c) $\underline{x}_{\mu p}$
m -
(d) $x=\log p+{ }^{1} \log K m \quad n$
69. Which of the following feature of catalysts is described in reactions given below? (i) $\mathrm{CO} \quad \mathrm{g} \quad 2 \mathrm{H} \quad \mathrm{g}(\mathrm{)}+2$ () $3 / 43 / 43 / 43 / 43 / 43 / 43 / 4 \circledR \mathrm{Cu} / \mathrm{ZnO} \mathrm{Cr}$ O- 23 CH OH g3()
(ii) COg()$+\mathrm{H}_{2}(\mathrm{~g})^{3 / 4} 3 / 4 \circledR^{\mathrm{Cu}}$

HCHO $g()$
(iii) COg 3 Hg()$+{ }_{2}()^{3 / 4} 3 / 4 \circledR^{\mathrm{Ni}} \mathrm{CHg} \mathrm{H}$ $\mathrm{Og}_{4}()+{ }_{2}()$
(a) Activity
(b) Selectivity
(c) Catalytic promoter (d) Catalytic poison
70. Which of the following is not a member of chalcogens?
(a)
(b) S
(c) Se
(d)Po
71. Pick out the wrong statement.
(a) Nitrogen has the ability to form $p \mathrm{p}-\mathrm{p} \mathrm{p}$ bonds with itself.
(b) Bismuth forms metallic bonds in elemental state.
(c) Catenation tendency is higher in nitrogen when compared with other elements of the same group.
(d) Nitrogen has higher first ionisation enthalpy when compared with other elements of the same group.
72. Which of the following element do not form complex with EDTA?
(a)
Ca (b) Mg
(c) $\quad \mathrm{Be}$
(d) Sr
73. Which one of the following cyano complexes would exhibit the lowest value of paramagnetic behaviour?
(a) $\quad[\mathrm{Co}(\mathrm{CN})] 6^{3-}$
(b) $\quad[\mathrm{Fe}(\mathrm{CN})] 6^{3-}$
(c) $[\mathrm{Mn}(\mathrm{CN})] 6{ }^{3-}$
(d) $[\mathrm{Cr}(\mathrm{CN})] 6^{3-}$
(At. $\mathrm{Nos}: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
74. When an aqueous solution of copper (II) sulphate is saturated with ammonia, the blue compound crystallises on evaporation. The formula of this blue compound is:
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}$ (square planar)
(b) $\quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ (Tetrahedral)
(c) $\quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{SO}_{4}$ (Octahedral)
(d) $\quad\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]$ (Octahedral)
75.

[Y]

Here [Y] is a
(a) single compound
(b) mixture of two compounds
(c) mixture of three compounds (d) no reaction is possible 76. Following compounds are given:
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(3)

Which of the above compound(s), on being
warmed with iodine solution and NaOH , will give iodoform?
(a) (1) and (2)
(b) (1), (3) and
(c) only (2)
(d) (1), (2) and
(4)
(3)
77. Arrange the following alcohols in increasing order of their reactivity towards the reaction with HCl .
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OH} \quad(1), \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH} \quad$ (2),
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-$
OH (3)
(a) $1<2<3$
(b) $2<1<3$
(c) $3<1<2$
(d) $2<3<1$
78. Thirty percent of the bases in a sample of DNA extracted from eukaryotic cells is adenine. What percentage of cytosine is present in this DNA?
(a) 10%
(b) 20%
(c) 30%
(d) 40%
79. The blue colour of snail is due to presence of
(a) Albumin
(b)
Haemocyanin
(c) Globulins
(d) Fibrinogen
80. Which of the following is a diamine?
(a) Dopamine
(b) Histamine
(c) Meprobamate (d) Chlorphenamine

PART - III (A): ENGLISH

PROFICIENCY

81. Choose the word which is most similar in meaning to the word 'Optimistic'.
(a) Favourable
(b) Gloomy
(c) Hopeful
(d) Rude
82. Choose the word which is most opposite in meaning to the word 'Drowsy'.
(a) Sleepy (b)
Nodding
(c) Yawning
(d) Wakeful

Direction (83-85): Which of the following phrases (I), (II), and (III) given below each sentence should replace the phrase printed in bold letters to make the sentence grammatically correct? Choose the best option among the five given alternatives that reflect the correct use of phrase in the context of the grammatically correct sentence. If the sentence
is correct as it is, mark (d) i.e., "No correction required" as the answer.
83. He is really feeling under the weather today; he has a terrible cold.
(I) feeling like the weather
(II) feeling over the weather
(III) feeling in the weather
(a) Only (I) is correct
(b) Only (III) is correct
(c) Only (II) is correct
(d) No correction required
84. By working part-time and looking after his old mother, he managed to get the best for both worlds.
(I) the best at both worlds
(II) the best of both worlds
(III) the best on both worlds
(a) Only (I) is correct
(b) Only (II) is correct
(c) Only (III) is correct
(d) No correction required
85. Hey, Nanny, speak about the devil and you are here.
(I) speak at the devil
(II) speak on the devil
(III) speak of the devil
(a) Only (I) is correct
(b) Only (II) is correct
(c) Only (III) is correct
(d) No correction required

DIRECTION (86-90): Read the following passage carefully and answer the questions given below it.

The likelihood of at least 600,000 deaths being caused annually in India by fine particulate matter pollution in the air is cause for worry, even if the data released by the World Health Organisation are only a modelled estimate. The conclusion that so many deaths could be attributed to particulate matter 2.5 micrometres or less in size is, of course, caveated, since comprehensive measurement of PM2.5 is not yet being done and the linkages between pollution, disease and deaths need further study. What is not in doubt is that residents in many urban areas are forced to breathe unhealthy levels of particulates, and the smallest of these - PM10 and less - can penetrate and get lodged deep in the lungs. The WHO Global Burden of Disease study has been working to estimate pollution-linked health impacts, such as stroke and ischaemic heart disease, acute
lower respiratory infection and chronic obstructive pulmonary disease. Data on fine particulates in India show that in several locations the pollutants come from burning of biomass, such as coal, fuel wood, farm litter and cow dung cakes. In highly built-up areas, construction debris, road dust and vehicular exhaust add to the problem. The Prime Minister launched an Air Quality Index last year aimed at improving pollution control. The new data, which the WHO says provide the best evidence available on the terrible toll taken by particulates, should lead to intensified action. A neglected aspect of urban air pollution control is the virtual discarding of the Construction and Demolition Waste Management Rules, notified to sustainably manage debris that is dumped in the cities, creating severe particulate pollution. The Environment Ministry has highlighted the role that debris can play as a resource. Municipal and government contracts are, under the rules, required to utilise up to 20 per cent materials made from construction and demolition waste, and local authorities must place containers to hold debris. This must be implemented without delay. Providing cleaner fuels and scientifically designed cookstoves to those who have no option but to burn biomass, would have a big impact on reducing particulate matter in the northern and eastern States, which are the worst-hit during winter, when biomass is also used for heating. Greening the cities could be made a mission, involving civil society, with a focus on landscaping open spaces and paving all public areas to reduce dust. These measures can result in lower PM10 and PM2.5 levels. Comprehensive measurement of these particulates is currently absent in many cities, a lacuna that needs to be addressed.
86. According to the WHO Global Burden of Disease study which of the following is/are pollution linked health impacts?
(I) Infection of the lower respiratory system
(II) Chronic obstructive pulmonary disease
(III) Stroke and ischaemic heart disease
(a) Only (I)
(b) Only (III)
(c) Both (I) and (II)
(d) All of the above
87. The conclusion regarding the deaths attributed to particulate matter 2.5 micrometers is considered to be caveated because
(a) Measurement of all aspects of PM2.5 has been done comprehensively
(b) Measurement of all aspects of PM2.5 is not radical
(c) Relation between pollution, disease and death is complete
(d) None of these
88. Which of the following is/are not true in the context of the passage?
(a) Eastern and Southern states are worst hit in winter by burning of biomass.
(b) The smallest particulate matter PM2.5 penetrates and gets lodged in lungs.
(c) Data on fine particulates in India show that in several locations the pollutants come from the smoke emitted by vehicles.
(d) None is true
89. As per the given passage, which of the following is/are the measures for lowering particulate matter in the atmosphere?
(I) Making cleaner fuels available
(II) Landscaping open areas
(III) Providing cooking stoves designedscientifically
(a) Only (I)
(b) Both (I) and (II)
(c) All of the above
(d) None of these
90. If sentence (B) "The Finance Ministry's warning to potential investors in bitcoin and other cryptocurrencies has come at a time when a new, seemingly attractive investment area has opened up that few have enough information about." is the first sentence, what is the order of other sentences after rearrangement?
(A) One of the main reasons for this volatility isspeculation and the entry into the market of a large number of people lured by the prospect of quick and easy profits.
(B) The Finance Ministry's warning to potential investors in bitcoin and other cryptocurrencies has come at a time when a new, seemingly attractive investment area has opened up that few have enough information about.
(C) A number of investors, daunted by the high price of bitcoin, have put their money into less well-established and often spurious cryptocurrencies, only to lose it all.
(D) Investment in bitcoin and othercryptocurrencies increased tremendously in India over the past year, but most new users know close to nothing of the technology, or how to verify the genuineness of a particular cryptocurrency.
(E) The price of bitcoin, the most popular of all cryptocurrencies, not only shot up by well over 1000% over the course of the last year but also fluctuated wildly.
(F) The government's caution comes on top of three warnings issued by the Reserve Bank of India since 2013.
(a) CDEFA
(b) EAFDC
(c) DCAEF
(d) ECDAF
91. If sentence (C) "Clinical trials involving human subjects have long been a flashpoint between bioethicists and clinical research organisations (CROs) in India." is the first sentence, what is the order of other sentences after rearrangement?
(A) Such over-volunteering occurs morefrequently in bioequivalence studies, which test the metabolism of generics in healthy subjects.
(B) Landmark amendments to the Drugs and Cosmetics Act in 2013 led to better protection of vulnerable groups such as illiterate people, but more regulation is needed to ensure truly ethical research.
(C) Clinical trials involving human subjects have long been a flashpoint between bioethicists and clinical research organisations (CROs) in India.
(D) The big problem plaguing clinical researchis an over-representation of low-income groups among trial subjects.
(E) While CROs have argued that more rules will stifle the industry, the truth is that ethical science is often better science.
(F) Sometimes CROs recruit them selectively, exploiting financial need and medical ignorance; at other times people overvolunteer for the money.
(a) ABDFE
(b) BDEAF
(c) DFAEB
(d) BEDFA

DIRECTION (92-93): Read the sentence to find out whether there is any grammatical error or idiomatic error in it. The error, if any, will be in one part of the sentence. The letter of that part is the answer. If there is no error, the answer is (d). (Ignore errors of punctuation, if any.)
92. Despite being (a)/ a good teacher, (b)/ he has no influence on his pupil. (c)/ No error (d)
93. Yesterday, when we were returning from the party, (a)/ our car met with an accident, (b)/ but we were fortunate to reach our home safely. (c)/ No error (d)
94. A group of sheep is known as :
(a) bunch
(b)
herd
(c) band
(d) fleet
95. A group of trees is known as:
(a) grove
(b)
parliament
(c) heap
(d) hedge

PART - III (B) : LOGICAL REASONING

96. In a code language, if REGAINS is coded as QDFZHMR, then the word PERIODS will be coded as -
(a) ODQNHCR
(b) ODDQHCR
(c) ODQHNCR
(d) ODQHNRC
97. If $5 \# 6=121$ and $10 \# 8=324$, then find the value of $23 \# 14=$?
(a) 1369
(b) 1349 (c)
1331
(d) 725
98. Which of the following cube in the answer figure cannot be made based on the unfolded cube in the question figure?

(a)

(b)

(c)

(d)

99. Which one of the following diagram represents the correct relationship among
Professor, Male and Female.
(a)

(b)

(c)

(d)

100. Select the related letter/word/ number from the given alternatives. Distance : Odometer :: ? : Barometer
(a) Humidity
(b)
Pressure
(c) Thickness
(d) Wind
101. Find the odd word/letters/ number pair/number from the given alternatives.
(a) $24-1614(\mathrm{~b})$
270-569
(c) 120-4325
(d) 162-6930
102. Choose the correct alternatives from the given ones that will complete the series.
L_N O__MLLM_OO_ML
(a) MNNNO
(b) MONNO
(c) MONON
(d) MONNN
103. Choose the correct alternatives from the given ones that will complete the series. 22, 26, 53, 69, 194,?
(a) 230
(b) 260
(c)
250
(d) 245
104. Select the missing number from the given responses.

(a) 888
(b) $788 \quad$ (c)

(d) 842
105. Identify the figure that will complete the pattern.

(b)

(d)

PART-IV: MATHEMATICS

106. The domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}^{2}-[\mathrm{x}]^{2}}$, (a) (c)
where $[\mathrm{x}$] denotes the greatest integer less than or equal to x, is
(a) $(0, ¥)$
(b) $(-¥, 0)$
(c) $(-¥, \neq)$
(d) None of these
107. If $m \sin q=n \sin (q+a 2)$ then $\tan (q+a)$ is $m+n$
a
(b)
$m+n \operatorname{tanq}(a)$
\tan
m-n
$\mathrm{m}-\mathrm{n}$
(c)
$\mathrm{m} \pm \mathrm{n} a(d)$
\cot
m-n
$\mathrm{m}-\mathrm{n}$
108. Number of solutions of equation $\sin 9 q=\sin q$ in the interval [0,2]p is
(a) 16
(b) 17
(c)
18
(d) 15
109. A pole stands vertically inside a triangular park ABC . If the angle of elevation of the top of the pole from each corner of the park is same, then the foot of the pole is at the
(a) centroid (b) circumcentre
(c) incentre
(d) orthocentre
110. Let A, B, and C are the angles of a plain triangle
and $\tan A=+, \tan B=z$. Then $\tan _C$ is equal

$$
23232 \text { to }
$$

(a) $7 / 9$
(b) $2 / 9$
(c) $1 / 3$ (d) $2 / 3$
111. If the amplitude of $z-2-3 i$ is $\mathrm{p} / 4$, then the locus of $z=x+i y$ is
(a) $x y+-=10$ (b) $x y--=10$ (c) $x y++$ $=10$ (d) $x y-+=10$
112. The roots of the equation $x^{4}-2 x^{3}+=x 380$ are :
(a) $5,-4, \frac{\frac{1 \pm 5 \sqrt{-3}}{2}}{2}$
(b) $-5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
(c) $5,4, \frac{-1 \pm 5 \sqrt{-3}}{2}$
(d) $-5, \quad 4, \frac{1 \pm 5 \sqrt{-3}}{2}$
113. Roots of the equation $x^{2}+b x-=c$ $0(b c,>0)$ are
(a) Both positive
(b) Both negative
(c) Of opposite sign
(d) None of these
114. In how many ways can 12 gentlemen sit around a round table so that three specified gentlemen are always together?
(a) 9 !
(b) 10 !
(c) 3 !
10 ! (d) 3 ! 9 !
115. The number of ways in which first, second and third prizes can be given to 5 competitors is
(a) 10
(b) 60
(c) 15
(d) 125
116. The coefficient of x^{3} in the expansion of
æç x -
-1 Ö $\div 7$
is : è $\quad x \varnothing$
(a) 14
(b) 21
(c) 28
(d) 35
117. If $x>0$, the $1+\log 2 x-\left(\log _{e} 2 x\right) 2+$ \qquad .. $=$
e +
1 ! 2 !
(a) x
(b) x^{2}
(c) $2 x$
(d) $\sqrt{\mathrm{X}}$
118. If a, b, c are in G.P., then
(a) $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in G.P.
(b) $a^{2}(b+c c),{ }^{2}(a+b b),{ }^{2}(a+c)$ are in G.P. $a b$

c

(c) , , are in G.P. bc caab+ +
(d) None of these
119. The locus of the point of intersection of the lines

$$
\mathrm{x}=\operatorname{aæçç} 11 _\ldots+-\mathrm{tt} 22 \ddot{0} \div \div \varnothing \text { and } \mathrm{y}=1 _2+\mathrm{att} 2
$$

represent (t being è a parameter)
(a) circle
(b) parabola
(c) ellipse
(d) hyperbola
120. The equation of the circle which passes through the point $(4,5)$ and has its centre at $(2,2)$ is
(a) $(x-2)+(y-2)=13$
(b) $(x-2)^{2}+(y-2)^{2}=13$ (c) $(x)^{2}+(y)^{2}=$ 13
(d) $(x-4)^{2}+(y-5)^{2}=13$

$$
x 2 y 2
$$

121. Eccentricity of ellipse $\overline{a_{2}}+\overline{b 2}=1$ if it passes through point $(9,5)$ and $(12,4)$ is
(a) $\sqrt{3 / 4}$
(b) $\sqrt{4 / 5}$
(c) $\sqrt{5 / 6}$
(d) $\sqrt{6 / 7}$
122. Consider the equation of a parabola $y^{2}+4 a x=0$, where $\mathrm{a}>0$ which of the following is/are correct? (a) Tangent at the vertex is $\mathrm{x}=0$
(b) Directrix of the parabola is $x=0$
(c) Vertex of the parabola is not at the origin (d) Focus of the parabola is at $(a, 0)$

$$
1+++231 / 4 n
$$

123. The value of lim \qquad $n 2$ +100 is equal to :
n ®平
$\begin{array}{ll}\text { (a) } ¥ & \text { (b) } \frac{1}{2}\end{array}$
(c) 2
(d) 0
124. $x \lim f{ }^{\frac{x-\sin x}{x+\sin } x_{2}}$ is equal to
(a) 1
(b) 0
(c) $¥$
(d) None of
these
125. The probability of getting 10 in a single throw of three fair dice is :
(a) $\frac{1}{6}$
(b) $\frac{1}{8}$
(c) $\frac{1}{9}$
(d) $\frac{1}{5}$
126. Number of solutions of the equation

$$
\tan ^{-1}(1++x) \tan ^{-1}(1-=x)-\mathrm{P} \text { are }
$$

2
(a) 3
(b) 2
(c) 1
(d)0 él 2 ù
$\overline{1}_{2} \hat{\mathrm{e}}_{2} \quad 1-2$ ú $^{\text {ú is an orthogonal }}$
matrix,
127. If $\mathrm{A}=\hat{\mathrm{e}}$

$$
3
$$

êëa 2 búû
then
(a) $\mathrm{a}=-2, \mathrm{~b}=-1$
(b) $\mathrm{a}=2, \mathrm{~b}=1$
(c) $\mathrm{a}=2, \mathrm{~b}=-1$
(d) $a=-2, b=1$
128. The points represented by the complex numbers
$1+i,-2+3 i, \frac{5}{3} i$ on the argand plane are
(a) vertices of an equilateral triangle
(b) vertices of an isosceles triangle
(c) collinear
(d) None of these

$$
\text { é } 3-2 \text { ù }
$$

129. If matrix $A=\hat{e}_{\hat{e} 1} 2 \quad-1$ ú and $\hat{e ̂ e ̈ ~} 0$

1 úû
$\mathrm{A}^{-1}=-1 \operatorname{adj}(\mathrm{~A})$, then k is k
(a) 7
(b) -7
(c) 15
(d) -11
130. If x, y, z are complex numbers, and

$$
\left|\begin{array}{c|c}
0-y-z \\
D=y-0 & -x \text { then } D \text { is } \\
z _x
\end{array}\right| \begin{aligned}
& -0
\end{aligned}
$$

(a) purely real
(b) purely imaginary
(c) complex
(d) 0
131. If $f(x)=\sin x$, when xis rational u

$$
=\cos x \text {, when xisirrational }{ }^{\prime} p \text { Then the }
$$

function is
(a) discontinuous at $\mathrm{x}=\mathrm{np}+\mathrm{p} / 4$
(b) continuous at $\mathrm{x}=\mathrm{np}+\mathrm{p} / 4$
(c) discontinuous at all x (d) none of these

$$
\text { ììí1,when2 } 0<x £ 3^{3} 4 \mathrm{p}^{\mathrm{p}}
$$

132. If $\mathrm{f}(\mathrm{x})=$ ï $2 \sin \quad-x$, when $\ll x \mathrm{p} \hat{\mathrm{i} 9}$
(a) $f(\mathrm{x})$ is continuous at $\mathrm{x}=0$
(b) $f(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{p}$
(c) $f(\mathrm{x})$ is continuous at $x=3 \mathrm{p}_{4}$
(d) $f(\mathrm{x})$ is discontinuous at $x=3 \mathrm{p}$

4
133. The value of c in $(0,2)$ satisfying the mean value theorem for the function $f(x)=x(x-1)^{2}, x \hat{\jmath}[0,2]$ is equal to
(a) $\frac{3}{4}$
(b) $\frac{4}{3}$
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$ $x \quad x+1$
$d y^{2}$
134. If $y=_\quad x+1+x$, then $\quad d x_{2}$ at $x=1$ is equal to
(a) $\frac{7}{4}$
(b) $\frac{7}{8}$
(c) $\frac{1}{4}$
(d) $\frac{-7}{8}$

$$
æ d y d x^{2} \ddot{o} æ^{2} \ddot{o}
$$

135. Let $y=e 2 x$. Then $\overline{\varrho ̧ e ̀ d x} 2 \div \overline{\text { çø }}$ è $d y_{2} \div \varnothing$ is
(a) 1
(b) $e^{-2 x}$
(c) $2 e-2 x$
(d) $-2 e-2 x$
136. A ball is dropped from a platform 19.6 m high. Its position function is - (a) $x=-$ $4.9 \mathrm{t}^{2}+19.6(0 £ \mathrm{t} £ 1)$
(b) $\mathrm{x}=-4.9 \mathrm{t}^{2}+19.6(0 £ \mathrm{t} £ 2)$
(c) $\mathrm{x}=-9.8 \mathrm{t}^{2}+19.6(0 £ \mathrm{t} £ 2)(\mathrm{d})$ $\mathrm{x}=-4.9 \mathrm{t}^{2}-19.6(0 £ \mathrm{t} £ 2)$
b
137. The value of the integral $\frac{\sqrt{\mathrm{Xdx}} \sqrt{\text { is }} \sqrt{ }}{\sqrt{2}}$

$$
a x++-a b x
$$

(a) p
(b) $\frac{1}{2}(b-a)$
(c) $\mathrm{p} / 2$
(d) $\mathrm{b}-\mathrm{a}$

$$
\mathrm{e}^{\mathrm{x} 2}(2 \mathrm{x}+\mathrm{x})^{3}
$$

138. Ò \qquad $(3+x)_{22} d x$ is equal to :
ex2
1 ex2
(a)

(b) $-\longrightarrow 2$
$(3+x) 22+k$

$$
(3+x)
$$

(c) \qquad 1 ex22 $2+\mathrm{k}(\mathrm{d})$ \qquad $(3 \mathrm{e}+\mathrm{xx}) 22+\mathrm{k} 4(3+\mathrm{x})$
a a
139. If $\mathrm{O} \mathrm{f}(2 \mathrm{a}-\mathrm{x}) \mathrm{dx}=\mathrm{m}$ and $\grave{\mathrm{O}}_{\mathrm{f}}(\mathrm{x}) \mathrm{dx}=\mathrm{n}$, then ${ }_{2 \mathrm{a}} \mathrm{O} \mathrm{f}(\mathrm{x}) \mathrm{dx}$ is equal to

0
(a) $2 \mathrm{~m}+\mathrm{n}$
(b) $m+2 n$
(c) $\mathrm{m}-\mathrm{n}$
(d) $m+n$
140. An integrating factor of the differential equation

$$
d y
$$

$\sin \mathrm{x}-+2 \mathrm{y} \cos \mathrm{x}=1$ is $d x$

(a) $\sin ^{2} x$
(b)
$\sin x$
(c) $\log |\sin x|$
(d) $\sin _{2} x$
141. The expression satisfying the differential equation $(x 2-1)$ _dy $+2 x y=1$ is $d x$
(a) $x y^{2}-x y^{2}=c$
(b) $\left(y^{2}-1\right) x=+y \quad c$
(c) $\left(x^{2}-1\right) y=+x \quad$ c
(d) none of these
$\longrightarrow, b_{\longrightarrow}=x \hat{i}^{\wedge}+\hat{j}+(1-x) k \wedge$ and 142. Let $a=$ $i^{\wedge}-k$
$\longrightarrow \hat{j}+(1+x-y) \hat{k}$. Then $[a b c \longrightarrow \longrightarrow \longrightarrow] c=$, $y i^{\wedge}+x$
depends on
(a) only y
(b) only x
(c) both x and y
(d) neither x nor y
143. If $i^{\wedge}+{ }^{\wedge} j j,+k i^{\wedge},{ }^{\wedge}+k$ are the position vectors of the vertices of a triangle ABC taken in order, then

ĐA is equal to
(a)
p
(b) 5
(c)
p
2
$\begin{array}{llll}2 & 5 & 6 & 3\end{array}$
$\begin{array}{llll}2 & 5 & 6 & 3\end{array}$
p
144. The projection of line joining $(3,4,5)$ and $(4,6,3)$ on the line joining $(-1,2,4)$ and $(1,0$, 5) is
(a) $\frac{4}{3}$
(b) $\frac{2}{3}$
(c) $\frac{8}{3}$
(d) $\frac{1}{3}$
145. Which of the following statements is correct?
(a) Every L.P.P. admits an optimal solution.
(b) A L.P.P. admits a unique optimal solution.
(c) If a L.P.P. admits two optimal solutions, it has an infinite number of optimal solutions.
(d) The set of all feasible solutions of a L.P.P. is not a convex set.
146. If the constraints in a linear programming problem are changed then (a) The problem is to be re-evaluated.
(b) Solution is not defined.
(c) The objective function has to be modified.
(d) The change in constraints is ignored.
147. In a binomial distribution, the mean is 4 and variance is 3 . Then its mode is :
(a) 5
(b) 6
(c) 4
(d) None of
these
$1+a 1++a a^{2} \mathbf{1 4 8}$. The sum
$1+++\ldots . \not$ is equal to
2 ! 3 !
(a) $e a$
(b)___ea-e $a-1$
(c) $(a-1) e^{a}$
(d) $(a+1) e^{a}$
149. The Boolean expression ~ (pÚ Úq) (\sim pÙq) is equivalent to :
(a) p
(b) q
(c) $\sim q$
(d) $\sim p$
150. If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately
(a) 25.5
(b) 24.0 (c)
22.0
(d) 20.5

SOLUTIOWS

PART - I : PHYSICS

1. (a) Let the side length of square be ' a ' then potential at centre O is

$$
\begin{aligned}
& V=\frac{k(-Q)}{\left(\frac{a}{\sqrt{2}}\right)}+\frac{k(-q)}{\frac{a}{\sqrt{2}}}+\frac{k(2 q)}{\frac{a}{\sqrt{2}}}+\frac{k(2 Q)}{\frac{a}{\sqrt{2}}}=0 \\
&=-Q-q+2 q+2 Q=0 \mathrm{P} Q+q=0 \text { (Given) } Q=- \\
& q
\end{aligned}
$$

2. (b) The magnetic field due to two wires at P

$$
B_{1}=\frac{\mathrm{m}_{0} i}{2(\mathrm{p}+d \quad x)} ; B_{2}=\frac{\mathrm{m}_{0} i}{2(\mathrm{p}-d \quad x)}
$$

Both the magnetic fields act in opposite direction.
mol i é $1-1$ ùúû
\ $B=B_{2}-B_{1}=2 \mathrm{p}$ êë $d-x \quad d+x$
 ixx2).

$$
\overline{1}^{2} a^{2} \sin ^{2} \mathrm{w} t
$$

8. (b)

$$
|\mathrm{P}+\mathrm{Q}|=\left|2 \mathrm{i}^{\wedge}-3^{\wedge} \mathrm{j}+4 \mathrm{k}^{\wedge}+-\wedge \mathrm{j} 2 \mathrm{k}\right|^{\wedge}=\mid 2 \mathrm{i}^{\wedge}-
$$

$2^{\wedge} \mathrm{j}+\left.2 \mathrm{k}\right|^{\wedge}$

$$
=\sqrt{2^{2}+2^{2}+2^{2}}=2 \sqrt{3}
$$

9. (b) The kinetic energy of a particle executing S.H.M. is given by $K=\frac{1}{2} m a^{2} \mathrm{~W}^{2} \sin ^{2} \mathrm{~W} t$ Now, average K.E. $=<K>=<$

$$
\begin{aligned}
& \text { m } \\
& =-\quad 1 \quad{ }^{2} a^{2}<\sin ^{2} \mathrm{w} t> \\
& ={ }_{2} \\
& =-12 m \mathrm{w} 2 a 2 \text { æ öè } \varnothing c ̧ \div 12 \quad \text { èæçQ < } \\
& \sin 2 \mathrm{q}>=-120 ̈ \div \varnothing
\end{aligned}
$$

$=\frac{1}{4} m \mathrm{w}^{22} a=-14 m a^{2}(2 \mathrm{pn})^{2} \quad(\mathrm{Q} \mathrm{w}=\mathrm{pn} 2)$
or, $<K>=\mathrm{p}^{2} m a^{22} \mathrm{n}$
10. (b)
11. (c) tanq $=B_{\underline{V}}=1 \quad \backslash \quad \mathrm{q}=45^{\circ} B_{H}$
12. (c) For third line of Balmer series $n_{1}=2, n_{2}=5$
$\backslash _1=R Z 2$ ėēn $1 \overline{12-} \mathrm{n} 122$ úûùgives $\mathrm{Z} 2=(\mathrm{n} 22 \mathrm{n} \mathrm{n}-12$
2n) R122 II ë
On putting values $\mathrm{Z}=2$
From

$$
E=-13.62 Z^{2}=-13.6(2)(1) 2^{2}=-54.4 \mathrm{eV} \mathrm{n}
$$

13. (b)
14. (d) $C \overline{g 2}=\sqrt{T L L T 2-22}=[] L$
15. (b) Due to increase in velocity, pressure will be low above the surface of water.
16. (a)

$\mathrm{AC}=\mathrm{x} \tan \mathrm{q}$
$B C=$ distance travelled by bullet in time t, vertically. $y=u \sin q t-\frac{1}{2} g t^{2}$
$A B=x \tan q-\left(u \sin q t-\frac{1}{2} g t^{2}\right)$
$=x \tan q-\left(u \operatorname{sinq} \times \overline{u \cos ^{x}} q-\frac{1}{2}{g t^{2}}^{x}\right)$

P distance trevelled by monkey $=\mathrm{x} \tan \mathrm{q}-\mathrm{x} \tan \mathrm{q}+\frac{1}{2} \mathrm{gt}^{2}=\frac{1}{2} \mathrm{gt}^{2}$
(\backslash bullet will always hit the monkey)
18. (b)
19. (b) Let ' n ' be the degree of freedom $g=$ $C C_{p}=$ çè $2+10 ̈ R={ }^{æ}$ çè $1+n^{20 ̈} \div \varnothing=$ 1.66 æ n
\div

$$
\text { væ öç } \div \text { è } \varnothing_{n} 2 R
$$

$$
==53 \text { æçè } 1+23 \text { ö } \div \varnothing \text { P n }
$$

$=3 \mathrm{P}$ gas must be monoatomic.
20. (b) Phase change p in 50 oscillations. Phase change $2 p$ in 100 oscillations. So frequency different ~ 1 in 100 .
21. (b) Time taken by same ball to return to the
hands of juggler $=^{2 \pi}=2^{\prime} \frac{20}{20}=4 \mathrm{~s}$. So he is $g \quad 10$ throwing the balls after each 1 s . Let at some instant he is throwing ball number 4. Before 1 s of it he throws ball. So height of ball $3: h_{3}=20 \times 1-\frac{1}{2} 10(1)^{2}$ $=15 \mathrm{~m}$
Before 2s, he throws ball 2. So height of

$$
\text { ball } 2: \mathrm{h}_{2}=20 \times 2-\frac{1}{2} 10(2)^{2}=
$$ 20 m

Before 3 s , he throws ball 1 . So height of ball 1: $\mathrm{h}_{1}=20 \times 3-\frac{1}{2} 10(3)^{2}=$ 15 m
22. (a) After the stone is thrown out of the moving train, the only force acting on it is the force of gravity i.e. its weight.
$\backslash \mathrm{F}=\mathrm{mg}=0.05 \times 10=0.5 \mathrm{~N}$.
23. (c) Impulse experienced by the body $=M V-(-M V)$ $=2 \mathrm{MV}$.
24. (a)
25. (c) $x=0 \quad 1 \quad 2 \quad 4$

$$
\begin{aligned}
& =-G æ c ̧ e ̀ ~ 1-1 ~ 1 / 20 ̈ \div \varnothing=-2 G
\end{aligned}
$$

26. (a) Heat gained by the water $=$ (Heat supplied by the coil) - (Heat dissipated to environment)
P $m c \mathrm{Dq}=P_{\text {Coil }} t-P_{\text {Loss }} t$
P $2 \times 4.2 \times 10^{3} \times(77-27)=1000 t-160 t$
$\mathrm{P} t=\ldots \quad 4.2^{\prime} 10_{5}=500 \mathrm{~s}=8 \min 20 \mathrm{~s}$
840
27. (a)
28. (b)
29. (b) $\mid=1 \quad 50 \mathrm{~cm} . \mathrm{l}_{2}=51 \mathrm{~cm}$.
$v \mu \mathrm{~T} \sqrt{\mathrm{P}} \mathrm{v} \underline{1}=\mathrm{T} 2=27 \sqrt{\xi_{+}} 20 \sqrt{\mathrm{r}_{2} \mathrm{~T}_{1}} 273$
P $\mathrm{v}_{2}=319.23$. $\mathrm{n}=1 \quad \mathrm{v} \underline{2}_{1}=$
$319.230 .50=640 \mathrm{~Hz}$.
$\mathrm{n}=2 \mathrm{IV}_{2} 2=51319.23^{\prime} 10-2=625.94=626 \mathrm{~Hz}$.

No. of beats $=n-n=2 \quad 114 \mathrm{~Hz}$
30. (a)
31. (d) $\mathrm{E}_{\mathrm{x}}=-{ }^{\mathrm{rv}}=-\mathrm{r}(-5 \mathrm{x}+5 \mathrm{y}+15 \mathrm{z})=5 \mathrm{rx} \quad \mathrm{rx}$ $\mathrm{E}_{\mathrm{y}}={ }^{r}=-3, \mathrm{E}_{\mathrm{z}}=-15 \mathrm{ry}$
Now, $E=\sqrt{\mathrm{F}_{\mathrm{y}}+\mathrm{E}_{\mathrm{z}}+\mathrm{E}^{z}}=7$
32. (c) 33. (b) 34. (b)
35. (c) As the two cells oppose each other hence, the effective emf in closed circuit is $15-10=5 \mathrm{~V}$ and net resistance is $1+$ $0.6=1.6 \mathrm{~W}$ (because in the closed circuit the internal resistance of two cells are in series.

Current in the circuit, $I=$ effective $\operatorname{emf}=-$ 5 difference across voltmeter will be same as the terminal voltage of either cell.
Since the current is drawn from the cell of15 V
$\backslash V_{1}=E_{1}-I r_{1}=15-1.6 _^{5}{ }^{\prime} 0.6=13.1 \mathrm{~V}$
36. (d)

123 ------10

Using $n_{\text {Last }}=n_{\text {First }}+(N-1) x$ where $N=$ Number of tuning forks in series $x=$ beat frequency between two successive forks

$$
\mathrm{P} 2 n=n+(10-1) \times 4 \mathrm{P} n=36 \mathrm{~Hz}
$$

work done
37. (d) Power = \qquad time
As no work is done by magnetic force on the charged particle because magnetic force is perpendicular to velocity, hence power delivered is zero.
38. (a) In an ac circuit, a pure indcutor does not consume any power. Therefore, power is consumed by the resistor only.
$\backslash \mathrm{P}=I R_{v}{ }^{2}$ or $108=$
(3) ${ }^{2} \mathrm{R}$ or $\mathrm{R}=12 \mathrm{~W}$
39. (d) $\mathrm{V}=3000$ volt.
-1

$$
\begin{aligned}
& 2=\mathrm{eV} \mathrm{P} \\
& \mathrm{v} \quad=
\end{aligned}
$$

2 eV
mv
$2 \sqrt{\mathrm{~m}}$
$\backslash \mathrm{v}=2 \sqrt{610^{\prime} 9.110^{\prime \prime-19-31^{\prime} 3000}}$

$$
=32.6 \times 10^{6}=\underset{N}{3.26} \times 10^{7} \mathrm{~m} / \mathrm{s}
$$

40. (d) $d N d t=50^{-} 0.5 N$ 〇 ${ }_{0} 50 d N-2 N=\grave{\mathrm{O}}_{0} d t$
$N=\left(100\left(1-\mathrm{e}^{-t / 2)}\right)=25 t=\right.$
$2 \ln (4 / 3)$

PART - II : CHEMISTRY

41. (a) Molar mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=25 \times 0.15$

$$
=3.75 \mathrm{~m} . \text { moles }
$$

Molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}={ }^{1} 3^{\prime} 3.75=\mathrm{M}^{\prime} 20$
$\mathrm{M}=0.0625=6.25 \times 10^{-2} \mathrm{M} 42$. (c) This
is Avogadro's hypothesis.
According to this, equal volume of all gases contain equal no. of molecules under similar condition of temperature and pressure.
43. (c) $\mid==h p 6.610^{\prime}-2434=210^{\prime}-10 \mathrm{~m}=2 \AA$

$3.3{ }^{10^{\prime}}$

44. (d) The smaller the atomic size, larger is the value of ionisation potential. Further the atoms having half filled or fully filled orbitals are comparatively more stable, hence more energy is required to remove the electron from such atoms.
45. (a) The number of lone pairs of electrons on central atom in various given species are

Species Number of lone pairs on central atom
$\mathrm{IF}_{7} \quad$ nil
$\mathrm{IF}_{5} \quad 1$
$\mathrm{ClF}_{3} \quad 2 \mathrm{XeF}_{2} \quad 3$
Thus the correct increasing order is

$$
\mathrm{IF}_{7}<\mathrm{IF}_{5}<\mathrm{ClF}_{3}<\mathrm{XeF}_{2}
$$

$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
46. (b) $\mathrm{O}_{2}: \mathrm{s} 1 s^{2}, \mathrm{~s}^{*} 1 s^{2}, \mathrm{~s} 2 s^{2}, s^{*} 2 s^{2}, \mathrm{~s} 2 p_{z}{ }^{2}$,
i̇ïiîinpp22pp2x, ïïiiîp**22pp11xy

2
p
Bond order $=\frac{10-6}{2}=2$
(two unpaired electrons in antibonding molecular orbital)
$\mathrm{O}+2: 1 \mathrm{~s} s 2 * 2, \mathrm{~s} 1 s, \mathrm{~s} 2 s 2 * 2, \mathrm{~s} 2 s$
,s2p2z,,їîpp22ppx22,,íiiiiîpp** 122pp0xy
iî y
Bond order $=\frac{10-5}{2}=2.5$
(One unpaired electron in antibonding molecular orbital)

Hence O_{2} as well as $\mathrm{O}^{+}{ }_{2}$ both are paramagnetic,
and bond order of O_{2} is greater than that of O_{2}.
47. (d) van der Waals's constant $b=4$ times the actual volume of 1 mole molecules $=4$
VN_{0}

DH $=40630 \mathrm{~J} \mathrm{~mol}^{-1}$
$\mathrm{DS}=108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \mathrm{DG}=\mathrm{DH}-\mathrm{TDS} \text { When } \mathrm{DG}=0, \mathrm{DH} \\
& \quad-\mathrm{TDS}=0 \\
& \mathrm{DH} \quad \frac{40630 \mathrm{Jmol}^{-1}}{} \\
& T=\overline{\mathrm{DS}=} \frac{108.8 \mathrm{Jmol}-1=373.4 \mathrm{~K}}{}
\end{aligned}
$$

49. (d) $\mathrm{DG}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{P}} ; \mathrm{K}_{\mathrm{P}}=(2 \mathrm{X})^{2} \mathrm{X}=$ $4 \mathrm{X}^{3}$
$\mathrm{DG}^{\circ}=-\mathrm{RT} \ln \left(4 \mathrm{X}^{3}\right)$

$$
\mathrm{DG}^{\circ}=-\mathrm{RT} \ln 4-3 \mathrm{RT} \ln \mathrm{X}
$$

50. (b)
(i) $\mathrm{HCl} 3 / 43 / 4 ® \mathrm{H}^{+}+\mathrm{Cl}^{-}$
$\backslash\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log$ $0.1=1$ (ii) NaCl is a salt of strong acid and strong base so it is not hydrolysed and hence its pH is 7. (iii) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl} \backslash$ The solution is acidic and its pH is less than that of 0.1 M HCl .
(iv) $\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O}$ 어이 $\mathrm{NaOH}+\mathrm{HCN} \backslash$ The solution is basic and its pH is more than that of 0.1 M HCl .
\backslash Correct order for increase in pH is $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}$

$$
<\mathrm{NaCl}<\mathrm{NaCN} .
$$

51. (d) $\mathrm{N} \mathrm{O}_{2} 5$ ㄴำाप $\mathrm{NO}_{2} 3+\mathrm{O}_{2}$
$4-x \quad x-y \quad x+y$

$y \quad y+x$
$\because\left[\mathrm{O}_{2}\right]=\mathrm{x}+\mathrm{y}=2.5$ for $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
$\left[\mathrm{O}_{2}\right] /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ and $2.5=(\mathrm{x}+\mathrm{y})(\mathrm{x}-\mathrm{y})$

$$
4-x
$$

$\backslash \mathrm{x}=2.166$
$\left[\mathrm{N} \mathrm{O}_{25}\right]=4-\mathrm{x}=1.846$
52. (b)
53. (a) Calcium gives brick red colour and barium gives apple green colour in flame test.
54. (b) The $\mathrm{Be}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ are amphoteric in nature.
55. (c) $n s^{2} n p^{1}$ is the electronic configuration of III A period. $\mathrm{X}_{2} \mathrm{O}_{3}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ is an amphoteric oxide.
56. (c) The strength of nucleophile depends upon the nature of alkyl group R on which nucleophile has to attack and also on the nature of solvent. The order of strength of nucleophiles follows the order:

$$
\mathrm{CN}^{-}>\mathrm{I}^{-}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}>\mathrm{OH}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}
$$

57.

IUPAC name - 3, 3-Dimethyl -1cyclohexanol
58. (b) The compound has two similar assymmetric C -atoms. It has plane of symmetry and exists in meso form.

plane of symmetry
Meso-2, 3 dichlorobutane
COOH
(d)

(A)

CH_{3}
59.3/43/43/43/43/4 ${ }^{\circledR}\left(\mathrm{KMnOKOH}_{4}\right)$
(B)
$\mathrm{COOC}_{2} \mathrm{H}_{5}$
$3 / 43 / 43 / 43 / 4 ® \mathrm{CHOH}_{2} \mathrm{H} 5+$

(C)

(D)
60. (c) The ozone layer, existing between 20 to 35 km above the earth's surface, shield the earth from the harmful U. V. radiations from the sun. Depletion of ozone is caused by oxides of nitrogen

$$
\mathrm{N}_{2} \mathrm{O}+\mathrm{hn} 3 / 43 / 4 ® \mathrm{NO}+\mathrm{N}
$$

reactive nitric oxide
$\mathrm{NO}+\mathrm{O}_{3} 3 / 43 / 4 ® \mathrm{NO}_{2}+\mathrm{O}_{2}$
$\mathrm{O}_{3}+\mathrm{hn} 3 / 43 / 4{ }^{\circledR} \mathrm{O}_{2}+\mathrm{O}$
$\mathrm{NO}_{2}+\mathrm{O}^{3 / 4} 3 / 4{ }^{\circledR} \mathrm{NO}+\mathrm{O}_{2}$
$2 \mathrm{O}_{3}+\mathrm{hn} 3 / 43 / 4{ }^{\circledR} 3 \mathrm{O}_{2}$ (Net reaction) The presence of oxides of nitrogen increase the decomposition of O_{3}.
61. (b) $\mathrm{d}=$ \qquad N aZM3 $\mathrm{P} \overline{6.25=} \quad 23 \mathrm{Z}$ 120^{\prime}

$$
\text { " }(410-8) 3
$$

A

$$
610^{\prime}
$$

62. (d) $D T_{b}=K$ b.m P 3.63' \qquad $0.616 / 15415$ ' 1000 ;

$$
\begin{aligned}
\mathrm{T}_{\mathrm{b}} & =61.7+0.968 \\
& =62.67^{\circ} \mathrm{C}
\end{aligned}
$$

63. (b) $\mathrm{pH}=2$

$$
\left[\mathrm{H}^{+}\right]=0.01 \mathrm{M}=C x=0.1 \mathrm{x} \mathrm{x}=
$$

$$
0.1 \mathrm{i}=1+\mathrm{x}=1.1
$$

$$
\pi=\mathrm{i} _{ }^{\mathrm{n}} \mathrm{RT}=\mathrm{iMRT}=1.10 .1^{\prime} \mathrm{RT}=0.11 \mathrm{RT} \mathrm{~V}
$$

${ }^{\text {st }}$ Law, $\mathrm{W}=\mathrm{q}$
64. (a) By Faraday's I

$$
\text { E } \quad 96500
$$

(where $\mathrm{q}=\mathrm{it}=$ charge of ion) we know that no of equivalent

$$
\frac{=}{\mathrm{E}} \underset{=\mathrm{W}}{96500} \frac{1 \mathrm{it}=}{1} \frac{965^{\prime}}{96500}=\frac{1}{100}
$$

(where $\mathrm{i}=1 \mathrm{~A}, \mathrm{t}=16 \times 60+5=965 \mathrm{sec}$.)
Since, we know that
Normality $=\overline{\text { no.of equivalent }}=\overline{\overline{100}}=0.01 \mathrm{~N}$

Volume(in litre) 1
65. (d) No. of moles of

$$
\mathrm{Ag}+=15^{\prime} 601.2510^{\prime}=3{ }^{\prime} 1=0.0116 \times
$$

10-3
96,500 $\quad 1$
\ éëAg+ùû = 1.16 \qquad '10-5 = $1.16^{\prime} 10-4$

$$
\frac{100}{1000}
$$

66. (a) The intersection point indicates the half life of the reactant A when it is converted to B .
67. (b) $\mathrm{T}_{1}=273+25=298 \mathrm{~K}$

$$
\mathrm{T}_{2}=273+60=333 \mathrm{~K}
$$

$$
\log k \underline{2}=\quad \text { Ea æç T - }
$$

TT T21 $2 \underline{1}$ Ö $\div \varnothing k_{1}$ 2.3 R è
$\log _{e} \underline{2}=\mathrm{Ea} æ c ̧ \mathrm{~T}-\mathrm{T} \underline{2}$
R
or
$10 \ddot{1} \div k$
è $T \mathrm{~T} 12 \varnothing$ $\log _{e} \quad 1.5102 .110^{\prime \prime}$
$-3^{-2}=E R \underline{a}$ çèæ \qquad
33335'2980̈ $\div \varnothing$
$\backslash E_{\mathrm{a}}=\frac{\frac{298 \times 333}{35}}{21} \begin{gathered}21 \\ \times R \times \log _{\mathrm{e}} 1.5-\end{gathered}$
68. (b) According to Freundlich equation,

$$
\begin{aligned}
& x 1 / n \text { or } x \\
& =K p 1 / n \mu p \\
& \bar{m}_{m} \quad-
\end{aligned}
$$

or $\log \bar{x}=\log K p^{1 / n}$ or $\log -^{x}=\log K+-$
${ }^{1} \log p$
m
m
n
69. (b) Given reactions shows that the selectivity of different catalysts for some reactants is different.
70. (d)chalcogens are defined as oreforming elements.
71. (c) Catenation tendency is higher in phosphorus when compared with other elements of same group.
72. (c) Be is the only group 2 element that does not form a stable complex with $[E D T A]^{4} . \mathrm{Mg}^{2+}$ and Ca^{2+} have the greatest tendency to form complexes with [EDTA] ${ }^{4}$.
73. (a) Co^{3+}

$[\mathrm{Co}(\mathrm{CN})]_{6}{ }^{3-}:$	$1 /$	\mathcal{L}	\mathcal{L}	$\mathcal{L L}$	
CN^{-}is a strong field					
	ligand and it				

74. (a) 75 .
(c)

75. (d) Among the given compounds only $\mathrm{CH}_{3} \mathrm{OH}$ does not give iodoform reaction.
76. (a) Alkylhalide formation in the reaction of alcohol with HCl undergoes $\mathrm{S}_{\mathrm{N}} 1$ reaction in which formation of the carbocation as intermediate occurs. Stability of carbocation is greatest for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}^{+}$due to resonance effect, and stability of tertiary carbocation is greater than the secondary carbocation hence the option (a) shows the correct order.
77. (b) If 30 percent of DNA is adenine, then by Chargaff's rule 30 percent will be thymine. The remaining 40 percent of the DNA is cytosine and guanine. Since the ratio of cytosine to guanine must be equal, then each accounts for 20 percent of the bases.
78. (b) Most snail blood is blueish in color. This is because their blood cells use haemocyanin, which
gets its blue color from the copper that is part of its structure.
79. (c) diamines are those compounds which contain two amino groups.

Dopamine

NH_{2}
Histamine -

Meprobamate -

PART - III (A): ENGLISH

PROFICIENCY

81. (c) Optimistic means hopeful and confident about the future.
82. (d) Drowsy means sleepy and lethargic. Therefore, option (d) is the correct antonym of it. Rest of the options are its synonyms.
83. (d) The phrase used in the sentence is grammatically correct hence, it doesn't require any correction. The meaning of the phrase' under the weather' is to feel ill.
84. (b) The correct phrase to be used is 'get the best of both worlds' which means a win-win situation.
85. (c) The correct phrase to be used is 'speak of the devil'. This phrase is said when a person appears just after being mentioned.
86. (d) 87. (b) 88. (d) 89
(d)
87. (b) The first sentence talks about the fact that only few investors have idea about bitcoins and other cryptocurrencies (which seems an attractive investment area), so, the finance ministry has warned the potential investors about it. Sentence E will follow the first sentence because it says that 'bitcoin not only shot up well over by 1000%......' which justifies 'attractive investment area' and forms a link. Now, we are left with only option (b) and (d) to choose from. When we consider the sentence F, we can see that this line seems to be a part somewhere in the middle of the paragraph, also, the first line starts with a warning, therefore, it must justify the consequences of the investment in bitcoins and other cryptocurrencies which is justified by sentence C. Hence, option (b) is the correct choice.
88. (d) After reading all the sentences carefully, we see that sentence A and F should go one after another as both talk about 'over-volunteer'. Moreover, sentence A will follow sentence F because of the presence of the word 'such' which signifies that the subject of the sentence has already been discussed in the previous sentence. So, we have option (c), (d) and (e) to choose from. Considering sentence D which talks about 'a big problem', we find that it can't be the second sentence as no problem of any sort has been dealt in the first sentence, so, option (c) and (e) gets eliminated. Hence, by elimination method, we can conclude that option (d) is the correct choice.
89. (c) Replace the preposition 'on' with 'over' to make the sentence grammatically correct.
90. (d) Replace the adverb 'safely' with the adjective 'safe' to make the sentence. Grammatically correct.
91. (b) 95. (a)

PART - III (B) : LOGICAL REASONING

96. (c) According to question,

REGAINS
QDFZHMR

Similarly,

97. (a) According to question, $(5+6)^{2}=121$
$(10+8)^{2}=324$
$(23+14)^{2}=\mathbf{1 3 6 9}$
98. (b) 99.
(a)
100. (b) Distance is measured by odometer. Similarly, Pressure is measured by Barometer.
101. (d) According to question, $24=1 \times 6$

$$
\times 1 \times 4
$$

$270=5 \times 6 \times 9$
$120=4 \times 3 \times 2 \times 5$
$162{ }^{1} \mathbf{6} \times 9 \times 3 \times 0=0$
102. (d) According to question, L M N O /O N M L/ L M N O/ O N M L 103.
(a) The pattern is:

104. (a) The pattern is:

$$
\begin{aligned}
& (1 \times 2 \times 3 \times 5)+(1+2+3+5)=41 \\
& (3 \times 4 \times 2 \times 6)+(3+4+2+6)=159 \\
& (9 \times 8 \times 3 \times 4)+(9+8+3+4)=
\end{aligned}
$$

888 105. (c)

PART - IV : MATHEMATICS
106. (d) $f(x)$ is defined if $x^{2}-\left[x^{2}\right]^{3} 0 P x^{23}$
$[\mathrm{x}]^{2}$, which is true for all positive real x and all negative integers x .

$$
m \quad=\sin (q+a 2)
$$

107. (a)
$\mathrm{n} \quad \sin q$

$$
\begin{aligned}
P_{m m-} \pm 11= & \sin (\sin (q+a+q+a-22 \quad)) \\
& \sin \sin q q
\end{aligned}
$$

$\backslash \mathrm{m}+\mathrm{n}=\ldots 2 \sin (\mathrm{q}+\mathrm{a}) \cos \mathrm{a}=$ $\tan (q+a) \cot a m-n 2 \cos (q+a) \sin a$
108. $(\mathbf{b}) \sin 9 q=\sin q P 9 q=p+-n$ $(1)^{n} \mathrm{q}$

If $n=2 m$ then $9 \mathrm{q}=2 m \mathrm{p}+\mathrm{qPq}=\ldots m \mathrm{p}$ 4 If n
$=2 m+1 \quad$ then $9 \mathrm{q}=(2 m+1) \mathrm{p}-\mathrm{q} \mathrm{p}$
$p q=(2 m+1) 10$ The values
belonging to $[0, \mathrm{p}]$ are $\mathrm{q}=0, \mathrm{p}, \mathrm{p}, 3 \mathrm{p}$,
p, 7p, 3p,9p,

$$
10410210 \quad 4 \quad 10
$$

p, 11p, $5 \mathrm{p}, 13 \mathrm{p}, 3 \mathrm{p}, 17 \mathrm{p}, 7 \mathrm{p}, 19 \mathrm{p}, 2 \mathrm{p}$
$\begin{array}{lllllll}10 & 4 & 10 & 2 & 10 & 4 & 10\end{array}$
109. (a) The foot of the pole A is at the centroid. Because centroid is the point of intersection of medians BE
and CF, which are B

AD, ${ }_{\mathrm{D}} \mathrm{C}$
the lines joining a vertex with the mid point of opposite side.
110. (a) $\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{p} \backslash \tan _{\text {æçè }} \mathrm{A}^{+} \mathrm{B}_{2}$ ö $\div \varnothing=$ tanèæç ${ }_{2}$
$-C_{20 ̈ \div \varnothing}$

C

$$
\begin{aligned}
& \text { A B } \\
& 12 \\
& \mathrm{P} \tan 2+\tan 2=\cot \mathrm{CP} \underline{3}+\underline{3}==9 \quad \cot \quad- \\
& 12 \\
& 1-\tan \mathrm{A} \cdot \tan \mathrm{~B} \quad \begin{array}{lllll}
- & & & & \\
\hline
\end{array}
\end{aligned}
$$

22
$\backslash \quad \tan \mathrm{C}={ }^{7}$.
$2 \quad 9$
111. (d) $z-2-3 i=x+i y-2-3 i=(x-2)+i y(-$
3) tan-1çèæ $x y-_23 \varnothing \div 0 ̈=\underline{p} 4$ P $x y-_23=$ $\tan \mathrm{p} 4=1$

$$
\mathrm{P} x-y+1=0
$$

112. (a) Given equation is $x^{4}-2 x^{3}+x-380=$ 0
$\mathrm{P}\left(x^{2}-x-20\right)\left(x^{2}-x+19\right)=0$
$\mathrm{P}(x-5)(x+4)\left(x^{2}-x+19\right)=0$
Hence, the required roots of the equation are

$$
5,-4, \frac{1 \pm 5 \sqrt{-3}}{2}
$$

113. (c) Since $b, c>0$ Therefore $\mathrm{a}+\mathrm{b}=-<b$ 0 and $a b=-<c 0$

Since product of the roots is -ve therefore roots must be of opposite sign.
114. (d) It is obvious by fundamental property of circular permutations.
115. (b) First prize can be given in 5 ways. Then second prize can be given in 4 ways and the third prize in 3 ways (Since a competitior cannot get two prizes) and hence the no. of ways. $=5 \times 4 \times 3=60$ ways
116. (b) Given, æçè $x-{ }^{1} x^{\text {ö }} \div \varnothing^{7}$ and the $(r+$ $1)^{\text {th }}$ term in the

$$
{ }^{n} \mathrm{C}_{r}(x)^{n-r} \quad \text { expansion of }(r \quad x+a)^{n} \text { is } \mathrm{T}_{(r+1)}=
$$

a
\ $(r+1)^{\text {th }}$ term in expansion of

$$
\begin{aligned}
& \text { æçè } x--1 \text { ö } \div \varnothing 7=7 \mathrm{C}() r x 7-r \text { èæç- } \\
& \quad-1 x \text { ö } \div \varnothing r x \\
& \quad={ }^{3} \text { occurs in } \mathrm{T}^{7} \mathrm{C}_{r}(x)^{7-{ }_{r}+1^{2 r}(-1)^{r}}
\end{aligned}
$$

Since x

$$
\begin{aligned}
& \backslash 7-2 r=3 \quad \text { P } \quad r=2 \text { thus the coefficient of } x^{3} \\
& ={ }^{7} \mathrm{C}_{2}(-1)^{2} \\
& =\frac{7 \times 6}{2 \times 1}=21 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 117. (d) } \begin{array}{r}
1+\overline{\log _{2}^{\mathrm{e}} \mathrm{x}} \quad\left(\log _{\mathrm{e} 2} \mathrm{x}\right) 2+\ldots \ldots . .+ \\
1! \\
=\operatorname{elog}_{2}{ }_{2} \mathrm{x}=\mathrm{e}^{\frac{1}{2}} \log \mathrm{xe}=\operatorname{elog}_{e} \sqrt{x}_{\mathrm{x}}=\sqrt{\mathrm{x}}
\end{array}+.
\end{aligned}
$$

118. (a) $\because a, b, c$ are in G.P.
$\backslash==\mathrm{Pb} a b c b \overline{a 2_{2}} b c \overline{22 \mathrm{P}} a 2, b 2, c 2$ are $r=2=r$
in G.P.
119. (a) To eliminate the parameter t, square and add the equations, we have $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} æ c ̧ c ̧ e ̀ 11+-\mathrm{tt} 2 \ddot{\partial} \div 2+$ 4at2 222

$$
\begin{aligned}
& 2 \div \varnothing \quad(1+t) \\
&=(1+t) 22[(1-t) \\
&=22+4 t 2] \\
&(1+t) 22
\end{aligned}
$$

Which is the equation of a circle.
120. (b) As the circle is passing through the point $(4,5)$ and its centre is $(2,2)$ so its radius is

$$
\sqrt{(4-2)^{2}+(5-2)^{2}} \neq 13 .
$$

\backslash The required equation is :

$$
(x-2)^{2}+(y-2)^{2}=13
$$

121. (d) We have $8 \overline{1_{2}}+\frac{25}{b^{25}}=1$ \qquad (1) a

$$
\frac{144}{-+-}=1
$$

$a_{2} \quad b_{2}$
From eq. (2) - eq. (1) :

$$
\begin{aligned}
& \frac{63}{a^{2}}-\frac{9}{b^{2}}=0 \text { Р } \frac{b^{2}}{a^{2}}=\frac{1}{7} \\
& e=\sqrt{1-\frac{1}{7}}=\sqrt{\frac{6}{7}}
\end{aligned}
$$

122. (a) Equation of parabola is $y^{2}=-4 a x$. Its focus is at $(-a, 0)$.
123. (b) Consider n lim® $® 1+++n 22+3100 \ldots n$

$$
=\begin{aligned}
& n n(+1) \\
& =n \lim \circledast \neq \frac{2(n 2+100)}{}
\end{aligned}
$$

(By using sum of n natural number $1+2+$

Take n^{2} common from N^{r} and D^{r}.
124.(b) $\lim _{x ® 0} \sqrt{\frac{x-\sin x}{x+\sin x}}=\lim _{x ® 0} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\sin x^{2}}{x}}}$

$$
=\lim _{x ® 0} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{x \sin x}{\varrho^{x}} \frac{\ddot{\partial}}{\dot{\varnothing}}}}=\sqrt{\frac{11}{1 \mu^{\prime}}}=0
$$

n 125. (b) Exhaustive no. of cases $=6^{3} 10$ can appear on three dice either as distinct
number as following $(1,3,6) ;(1,4,5) ;(2,3,5)$ and each can occur in 3! ways. Or 10 can appear on three dice as repeated digits as following $(2,2,6),(2,4,4)$,
$(3,3,4)$ and each can occur in $\frac{3!}{2!}$ ways.
\backslash No. of favourable cases $=3^{\prime} 3!+3^{\prime} 2!\frac{3!}{2!}=27$
126. (c) $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=-\mathrm{P}$
$2 \mathrm{P} \tan ^{-}$

$$
\begin{aligned}
& 1(1+x)=\mathrm{p}_{2-\tan ^{-1}(1-x) \mathrm{P} \tan ^{-1}(1+x)} \\
& =\cot ^{-1}(1-x)
\end{aligned}
$$

$$
\mathrm{P} \tan ^{-1}(1+x)=\tan ^{-1} \text { œ̧è } 1 _-{ }^{1} x^{\text {ö }} \div \varnothing
$$

$$
1
$$

P1+ =x \qquad 1-x
$\mathrm{P} 1-x^{2}=1 \mathrm{P} x=0$
127. (a) As A is an orthogonal matrix, $A A^{T}=I$

él	22 ù	él 2	aù él 0 0ù		
1 ê					
P - ê2	1-2úú \times _13 êê2		12 úú = êê01 0úú		
3					
êëa	2	b ûú	êë2	-2	búû
	êë0	0	1úû	2	2 ù
é1	2	aù	él	0	0ù

$$
\begin{aligned}
& \text { P ê } 092 \mathrm{a}+-22 \mathrm{bú} \text { êëa }++42 \mathrm{~b} 2 \mathrm{a}+-22 \mathrm{~b} \mathrm{a}^{2}+ \\
& \quad+4 \mathrm{~b}^{2} \text { úd }_{\hat{u}}
\end{aligned}
$$

$\mathrm{Pa}+4+2 \mathrm{~b}=0,2 \mathrm{a}+2-2 \mathrm{~b}=0$ and $\mathrm{a}^{2}+$ $4+b^{2}=9$
$\mathrm{pa}+2 \mathrm{~b}+4=0, \mathrm{a}-\mathrm{b}+1=0$ and $\mathrm{a}^{2}+\mathrm{b}^{2}$ $=5$

P $a=-2, b=-1$
128. (c) Let $z_{1}=1+i, z_{2}=-2+3 i$
and $z_{3}=\left|\begin{array}{cc}0+\frac{5}{3} i \\ x_{1} y_{1} & \\ 1 & 1\end{array}\right|=\mid$
11

Then $x_{2} y_{2}$ 1-2 $31 x_{3} y_{3} 105 / 31$
$=13$ çèæ $-53 \div \varnothing 0 ̈+1(2) 1+$ çèæ-310ø $\div 0 ̈=+$
$-43210-3=4610+-3=0$

$$
\text { é3 -2 } 4 \text { ù }
$$

129. (c) If $\mathrm{A}=\mathrm{e} 1 \quad 2$ 1ú êë0 $1 \quad 1$ úû
and $\mathrm{A}^{-1}=-1 \operatorname{adj}(\mathrm{~A})$
Also, we know $\mathrm{A}^{-1}=\operatorname{adj}(\mathrm{A})$
\backslash By comparing (i) and (ii) $|\mathrm{A}|=k$

$$
\left.\begin{aligned}
& \left\lvert\, \begin{array}{cc}
3-2 & 4 \\
0 & 1
\end{array}\right. \\
& \mathrm{P}|\mathrm{~A}|=1 \\
& 2-1
\end{aligned} \right\rvert\, \begin{aligned}
& 2(2+1)+2(1+0)+4(1-0)=9+2+4=15
\end{aligned}
$$

130. (b) We have
$\mathrm{B}=\left|\begin{array}{ll}0-y-z \\ y & 0 \\ x & -x=-x\end{array}\right| \begin{array}{ll}0 & y\end{array}\left|\begin{array}{ll}x & y \\ x & x\end{array}\right|-z$
[Interchanging rows and columns]

$$
=(1)-\left\{\begin{array}{c}
0--y r \\
y-0-x= \\
{[\text { Taking }-1 \text { common from each row] }}
\end{array}\right.
$$

$$
\backslash \bar{D}+D=P 0 \quad 2 \operatorname{Re}(D=) 0
$$

$\backslash D$ is purely imaginary.
131. (b) The function can be continuous only at those points for which

$$
\sin x=\cos x P=p+x \quad n \quad \underline{p}
$$

132. (c) Here $f^{\text {æç }}{ }^{3} 4^{\mathrm{p}} \mathrm{O} \div \div \quad \varnothing=1$ and ${ }_{x ® \mathrm{p}} \lim _{3 / 4-} f x()=1$
$x ® \operatorname{plim} 3 / 4^{+} f x()=h \lim 2 \sin ® 0 _9^{2}$ æ çè $^{3} 4^{\underline{\mathrm{p}}}+h \div \varnothing^{\text {ö }}$

$$
=\begin{gathered}
2 \sin p=1 \\
6
\end{gathered}
$$

Hence $f(\mathrm{x})$ is continuous at $x=3 \mathrm{p}$.
4
133. (b) $f(x)=x(x-1)^{2} ; x \hat{\imath}[0,2]$

$$
f(b)-f(a)
$$

$\mathrm{f} \Phi(\mathrm{c})=\quad \longrightarrow \mathrm{b}-\mathrm{a} \quad ; \mathrm{f}(2)=2, \mathrm{f}(1)$
$=0 \mathrm{f} \Phi(\mathrm{x})=3 \mathrm{x}^{2}-4 \mathrm{x}+1 \mathrm{P} \mathrm{f} \Phi(\mathrm{c})=3 \mathrm{c}^{2}-4 \mathrm{c}+$
1

Thus, $3 \mathrm{c}^{2}-4 \mathrm{c}+1=\frac{\frac{\Gamma(2)-\Gamma(0)}{2-0}}{2}$

$$
=-\quad-22 \quad 00
$$

$=1 \mathrm{Pc}=_43$
134. (a) Given expression can be written as

$$
\begin{array}{r}
y=1-x 1+1++11 x \mathrm{P} \quad d y d x=\frac{\mid 2-x}{12-}- \\
(1+x)
\end{array}
$$

$\longrightarrow d y 2=-2(1+x)-3+2 x-3=-23+x 23-$
$d x 2 \quad(1+x)$

Now, $d y 2 \mid=\quad-23+(1) 23=-82+$

$$
2=-74 d x 2 x=1 \quad(1+1)
$$

135. (d) $y=e 2 x \backslash d x=2 e 2 x$ and $\ldots d y 22=$ $4 e 2 x d y d x-\frac{}{d x} \quad-$

$$
\begin{aligned}
& =2 x=2 y \\
& d y \quad 2 e^{2 x}
\end{aligned}
$$

$$
d x_{2}=-12=-12 e-4 x
$$

$\backslash d y_{2} \quad 2 y$
$\backslash d y d x d x d y 2.2=4 e 2 x$ çèæ__-e$2 x O ̈=-2 e-2 x$
$2 \quad 2$
$2 e 2$

$$
x \div \varnothing
$$

$d x^{2}$
136. (b) We have, $\mathrm{a}=\quad$ - $2=-9.8$
dt
The initial conditions are $\mathrm{x}(0)=19.6$ and $\mathrm{v}(0)=0$ dx

So, $v=-\quad=-9.8 \mathrm{t}+\mathrm{v}(0)=-9.8 \mathrm{tdt}$
$\backslash \mathrm{x}=-4.9 \mathrm{t}^{2}+\mathrm{x}(0)=-4.9 \mathrm{t}^{2}+19.6$
Now, the domain of the function is restricted since the ball hits the ground after a certain time. To find this time we set $\mathrm{x}=0$ and solve for t .

$$
0=-4.9 t^{2}+19.6 P \mathrm{t}=2
$$

137. (b) Given, $I=\grave{O}_{a} \frac{b}{\sqrt{x d x}}$

Note : O$^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}=$ O$^{\mathrm{b}} \mathrm{f}(\mathrm{a}+-\mathrm{b}$ $x) d x$ a a

Ò $b \quad a+-b x \quad d x$
$\backslash I=a \quad a+-+b \quad x \quad x$
Add (i) and ($\sqrt[{(\sqrt{i}) \text {, }}]{ }$
$b \sqrt{x d x}_{b} \quad a+-b x d x$
$2 \mathrm{I}=\mathrm{O}_{\mathrm{O}}^{\mathrm{a}} \frac{\mathrm{x} \sqrt{+--a}}{\sqrt{\sqrt{2}} \sqrt{ }} \quad \mathrm{~b} \quad \frac{\sqrt{\mathrm{x+O} \mathrm{O}^{a} \mathrm{a}}+-+\mathrm{b}}{\sqrt{\sqrt{2}}} \quad \mathrm{x}$
$=\dot{O}_{a b x} \frac{\sqrt{ } \sqrt{++-++}+\sqrt{5 a}}{x b} \quad x d x x$
$=\grave{O}_{\mathrm{ab}} 1 . \mathrm{dx}=[\mathrm{x}] \mathrm{ba}$

$$
2 \mathrm{I}=\mathrm{b}-\mathrm{a} \quad \backslash \mathrm{I}=
$$

138. (d) Put $x^{2}=t$ P $2 x d x=d t$

$$
\mathrm{I}=\overline{\mathrm{O}}{\left.\left.\overline{\mathrm{e}^{\mathrm{x}_{2}}(3(2++\mathrm{xx} 2} 2^{2}\right)\right)}^{x} \mathrm{dx}={\overline{12 \mathrm{O}_{\mathrm{e}}}}_{\mathrm{t}}(3(2++\mathrm{t}) \mathrm{t}) 2 \mathrm{dt}
$$

$$
=\overline{12 \mathrm{O} \mathrm{e}\left(3^{\mathrm{t}}(3++-\mathrm{t}) \mathrm{t} 21\right) \mathrm{dt}=12 \overline{\mathrm{O} \mathrm{e}^{\mathrm{t}}} . \overline{\mathrm{d}^{2}}}
$$ éêêë $31+t-(3+1 t) 2$ ùúúû $d t$

$$
\begin{gathered}
=\overline{12} \text { e } \cdot \overline{{ }^{\top} 3+1} \mathrm{t}+\mathrm{k} \text { éêēêè } \because \overline{\mathrm{d} æ c ̧ e ̀ ~} \overline{31+} \\
\text { tö } \div \varnothing=(3+-1 \mathrm{t})_{2} \\
\text { ùúúûû dt }
\end{gathered}
$$

$$
1 \text { ex2 }
$$

$$
=-\frac{22+\mathrm{k}}{3+\mathrm{x}}
$$

139. (d) Put $x=2 a-t$ so that $d x=-d t$ when x $=a, t=a$ and when $x=2 a, t=0$
ò

140. (a) Given differential equation is
$d y$
$\sin x \ldots+2 y \cos x$

$$
=1 d x
$$

$$
d y \quad \cos x \quad 1
$$

P $\frac{-}{d x}+2 y \frac{}{\sin x}=\frac{}{\sin x}$
dy
$\mathrm{P} d x+(2 \cot x y)=\operatorname{cosec} x$
$\mathrm{I} . \mathrm{F}=e$ Ò $_{2 \cot x d x}$

$$
=e_{2} \log (\sin x)=\sin 2 x
$$

141. (c) Rewrite the given differential equation as follows :
$\frac{d y}{+2-1 y}=\frac{1}{x^{2}-1}$, which is a linear
form $\mathrm{dx} \quad \mathrm{x}$
The integrating factor I.F.
$=e^{\frac{2 x}{\partial}}{ }_{x 2-1} d x=e \ln \left(x^{2}-1\right)=x 2-1$

Thus multiplying the given equation by $\left(x^{2}-1\right)$,
we get $\left(x^{2}-1\right) \quad d y+2 x y=1 d x$
$P _{ }^{d}\left[y\left(x^{2}-1\right)\right]=1 d x$
On integrating we get $y\left(x^{2}-1\right)=x+c \rightarrow$
142. (d)

$$
\begin{aligned}
& a=-i^{\wedge} k b^{\wedge},=x i^{\wedge}++-^{\wedge} \quad\left(\begin{array}{ll}
1 & x k
\end{array}\right)^{\wedge} \text { and } \\
& \vec{n}^{\wedge} x j^{\wedge}(1 x y k)^{\wedge} c=+++-y i \\
& {\left[\begin{array}{l}
a b c]=a b c x .^{\prime}=11-x
\end{array}\right.} \\
& y x 1+x y- \\
& =1 \text { 1éë }+-+x y x x^{2} \text { ù éû ë- } x^{2}-y \text { ùû } \\
& =-1 y+x^{2}-x^{2}+y \\
& =1
\end{aligned}
$$

Hence éë $a b c \rightarrow \rightarrow$ ùû is independent of x and y both.
143.(d)

$$
\text { Now, } \mathrm{AC}=-k^{\wedge} \hat{j} \text { and } \mathrm{AB}=-k^{\wedge} i^{\wedge}
$$

$$
\text { ® } \quad \circledR
$$

Let q be the angle between $A C$ and $A B$.

$$
\begin{gathered}
\frac{1--+00}{\sqrt{2} \sqrt{2}}-\quad 0 \quad \cos \quad \mathrm{q} \\
=12 \mathrm{pq=60}^{\circ}=\underline{\mathrm{p}} 3
\end{gathered}
$$

144. (a) Let $\mathrm{A}=(3,4,5), \mathrm{P}=(-1,2,4)$
$\mathrm{B}=(4,6,3)$ and $\mathrm{Q}=(1,0,5)$
\backslash Dr's of line AB are $(4-3),(6-4),(3-5)$

$$
=1,2,-2
$$

and Dr's of line PQ are $(1+1),(0-2),(5-4)$

$$
=2,-2,1
$$

\backslash Dc's of line $\mathrm{PQ}=\frac{}{\sqrt{2^{2}+-(2)^{2}+1}},-,-$

$$
\begin{array}{ll}
\begin{array}{ll}
2 & -2 \\
= & 1-,
\end{array} \\
& 3
\end{array}
$$

\backslash Projection of line segment AB on the line $P Q$
is $2(1)+$ æçè- $320 ̈ \varnothing(2)+$ öç \div è $\mid \varnothing 3 \overline{1}$ (2)-

$$
=34
$$

3
145. (c) 146. (a)
147. (c) In Binomial distribution, Mean $=n p$, Variance $=n p q$ and the mode is r if for $x=$ r, the probability function $p(x)$ is maximum. Given $n p=4$ and $n p q=3$
$\backslash q=\frac{3}{4}$ and $p=1-q=1-\frac{3}{4}-$ $-\frac{1}{4}$

Also, $\mathrm{n}={ }^{4}={ }^{4}=$
16

$$
\mathrm{p} \quad 1 / 4
$$

Now, $(n+1) p=(16+1)^{\frac{1}{4}} \quad-=$
$-\frac{17}{4} \quad-\quad=+4-\quad \frac{1}{4}$
P The distribution will have unique mode (unimodal) \& the mode
$=4$ 148. (b) The given series
is

$$
1+\frac{1+a}{2!}+\frac{1++a}{3!} a^{2}+\underset{4!}{1++a} a^{2} \pm a^{3}+\ldots
$$

Here, $\mathrm{T}_{\mathrm{n}}=1++\mathrm{a} \quad \mathrm{a}^{2}+\mathrm{a}^{3}+\ldots$.to n terms

$$
\begin{aligned}
& =\frac{(11(1-a) n}{}=\frac{1 æ c ̧ c ̧ e ̀ l-n!a n ~}{} \overline{\bar{c}} \div \div \varnothing \\
& -a)(n!) \quad 1-a \\
& \backslash \mathrm{~T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots . \text {.to } ¥ \\
& =\ldots 1 \text { éê } 1-a+1-a^{2}+1-a^{3}+\ldots \text {.to ¥ùú } \\
& 1-\mathrm{a} \text { ëê } 1 \text { ! } 2 \text { ! } 3 \text { ! úû } \\
& =1-1 \text { á éêêëæççè } 1!1+2!1+3!1 \\
& +\ldots . \text { to¥ö } \div \mp \varnothing \text { ççè } 1!^{a}+{ }^{a} 2!^{2}+{ }^{a} 3!{ }^{3} \\
& +. . . \text { to } ¥ 0 ̈ \div \div \varnothing \text { ùúúúu } \\
& =\frac{1}{1-a}^{1}\left[(e--1)\left(e^{a}-1\right)\right] \\
& =\frac{\mathrm{e}-\mathrm{e}^{\mathrm{a}}}{1-\mathrm{a}}=\frac{\mathrm{e}^{\mathrm{a}}-\mathrm{e}}{\mathrm{a}-1}
\end{aligned}
$$

149. (d) \square (pÚq)Ú($\square \mathrm{pÙq})$
$(\square \mathrm{pU} \square \mathrm{q})$ Ú $(\square \mathrm{pÙq})$
$\mathrm{P} \square \mathrm{p}$ Ù $(\square \mathrm{q}$ Úq)
P U ${ }^{\circ} \square \mathrm{pt} \square \mathrm{p}$
150. (b) We know that,

Mode $=3$ Median -2 Mean $=3(22)-2(21)$
$=66-42=24$

