		2016	CODE : SO8
	A	प्रश्नपुस्तिका-III BOO	स्तिका क्रमाक MLET NO.
' ->		$\dot{\mathbf{u}}$ $\dot{\mathbf{u}}$ $\dot{\mathbf{u}}$ $\dot{\mathbf{u}}$	एकूण प्रश्न : 200
900 —		कृषि आभयात्रिका	(कूण गुण : 400
(1)	सदर प्रश्नपुस्तिकेत 200 अनिवाय प्रश्न आहेत किंवा नाहीत याची ख ल्योन तटलन भ्यावी	र् <u>पू</u> र्ण पा। <u>1 प्रश्न आहेत.</u> उमेदवारांनी प्रश्नांची उत्तरे लिहिण्य 11त्री करून घ्यावी. असा तसेच अन्य काही दोष उ	स सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून
(2)	ाप पप्पून व्यापा. आपला परीक्षा-क्रमांक ह्या चौकोन	गंत परीक्षा-क्रमांक	
	न विसरता बॉलपेनने लिहावा.	ा केंद्राची संकेताक्ष	रे शेवटचा अंक [1
(3)	वर छापलेला प्रश्नपुस्तिका क्रमांक	तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरी	ोल सूचनेप्रमाणे न विसरता नमूद करावा.
(-)	उत्तरांपैको सर्वात योग्य उत्तराचा क्र उत्तरक्रमांक नमूद करताना तो संबं काळ्या शाईचे बॉल्प्रेन वापरावे	मांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रि धित प्रश्नक्रमांकासमोर छा <mark>यांकित</mark> करून दर्शविला र , पेन्सिल वा शाईचे पेन वापरू नये .	किंवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर जाईल याची काळजी घ्यावी. ह्याकरिता फक्त
(5)	सव प्रश्नाना समान गुण आहत. य वेगाने प्रश्न सोडवावेत. क्रमाने प्रश् प्रश्नाकडे वळ्यवे. अशा प्रकारे शे परतणे सोईस्कर ठरेल.	<u>स्तिव सर्व प्रश्नाचा उत्तर द्यावात</u> . घाइमुळ चुका हो ल सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठी वेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक र	णार नाहात याची दक्षता घऊनच शक्य तितक्या) ण वाटल्यास त्यावर वेळ न घालविता पुढील उहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे (
(6)	उत्तरपत्रिकेत एकदा नमूद केलेले उ	तर खोडता येण <mark>ार नाही. नमूद केलेले उत्तर खोडून</mark> नव्य	याने उत्तर दिल्यास ते तपासले जाणार नाही.
(7)	प्रस्तुत परक्षिच्या उत्तरपत्रिकार तसेच ''उमेदवाराने वस्तुनिष्ठ ब नमूद करावीत. अन्यथा त्यांच करण्यात येतील <mark>''.</mark>	व मूल्याकन करताना उमदवाराच्या उत्तरपत्रिव बहुपर्याची स्वरूपाच्या प्रश्नांची दिलेल्या चार पर या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुव	कताल याग्य उत्तरानाच गुण दिल जातोल. र्थायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत कीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा
F		ताकीद	
ह	॥ प्रश्नपत्रिकेसाठी आयोगाने गेशाकश्वात सोवतागळा प्रगि	विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्ति प्रेपानी नापगाराम नेगरान रोन आहे - ही	तका आयोगाची मालमत्ता असून ती े तेल संपेपर्यंत सतर प्रप्रतापितकेची !
प प्र	राक्षाककारी उनदेवाराल्य परिव त/प्रती, किंवा सदर प्रश्नप्	, तिवा पायरण्यात दण्यात पत आह. हत्तिकेतील काही आशय कोणत्याही र	यळ सपपपा सदर प्रशापुरसाय स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे
वि	कोणत्याही व्यक्तीस पुरविणे, के तारी केलेल्या ''परीक्षांमध्ये रतदीनसार तसेच प्रचल्ति क	, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी होणाऱ्या गैरप्रकारांना प्रतिबंध करण्या तयद्याच्या तरत्दीनुसार कारवाई करण्यात	कृती करणाऱ्या व्यक्तीवर शासनाने बाबतचा अधिनियम-82'' यातील । येईल व दोषी व्यक्ती कमाल एक
व त	र्षांच्या कारावासाच्या आणि/ सेच ह्या प्रश्नपत्रिकेसाठी विहि	केंवा रुपये एक हजार रकमेच्या दंडाच्या त केलेली वेळ संपण्याआधी ही प्रश्नपुस्ति	शिक्षेस पात्र होईल. का अनधिकृतपणे बाळगणे हा सुद्धा
ग् त	न्हा असून तसे करणारी व्यक्त रोही अशा व्यक्तीविरूद्ध उक्त	ो आयोगाच्या कर्मचारीवृंदापैकी, तसेच पर् अधिनियमानुसार कारवाई करण्यात येईल	रीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली व दोषी व्यक्ती शिक्षेस पात्र होईल

A

SO8

Adda 247

1 . So	il Tillage	consists of :
---------------	------------	---------------

- (1) Breaking of Compact Earth Surface
- (2) Loosening the Soil
- (3) Only (1)
- (4) Both (1) and (2)

2.	A co	ommon type of duster is used :		
	(1)	Plunger type	(2)	Knapsack type
	(3)	Rotary type	(4)	All of the above
3.	Swii	rl plate is a part of :		
	(1)	Flat fan nozzle	(2)	Cone nozzle
	(3)	Spinning disc nozzle	(4)	None of these
4.	In ca	arburator type petrol engines, the	fuel is	ignited by :
	(1)	high Compression	(2)	electric Spark

(1)Ingit Compression(2)(3)petrol Flame(4)(4)all the above

5. Inertial forces perpendicular to the <u>cau</u>se the engine to shake.

(1) camshaft (2) cra<mark>nkshaft (3) c</mark>onnecting rod (4) cylinder head

6. In disc harrow, the spacing between discs is maintained by :
(1) Lever
(2) Spool
(3) Gang angle
(4) Gang axle

7. In constant mesh type transmission system, the gears used are usually :

- (1) Helical type
 (2) Worm Gear
 (3) Bevel Gear
 (4) Straight edge type
- 8. It is the machine to cut the crops and ties them into neat and uniform sheaves :
- (1) Reaper binder(2) Reaper(3) Mower(4) None of these

9. In rotary dusters, the handle should be cranked for efficient performance at :

(1)	30 to 35 rpm	(2)	50 to 60 rpm	(3)	40 to 50 rpm	(4)	5 to 10 rpm
-----	--------------	-----	--------------	-----	--------------	-----	--------------------

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

A

									1
10.	Dev (1)	ice used to con choke	it r ol engi (2)	ne speed w governor	rithin a	a speci (3)	ified limit, is call turbocharge	ed : (4)	carburator
11.	As	per ASAE stand	dard, the	speed of F	TO w	hen oj	perating under l	oad is	
	(1)	540±10 rpm	ı		(2)	1040)±10 rpm		
	(3)	$1500 \pm 10 \text{ rps}$	m		(4)	1100	0±10 rpm		
12.	ln c	ultivator with	rigid tyre	es, the work	king de	epth is	controlled by :		
	(1)	guard rails	(2)	pegs		(3)	gauge wheel	(4)	spikes
13.	Unc obse	ler tractor test ervations are ta	ing in th ken corr	e test of m esponding	ain po to :	ower t	ake off at varyi	ng load	d condition, the
	(1)	85% of the T	orque		(2)	Max	imum Power		
	(3)	Maximum To	orque		(4)	Both	ı (1) and (2)		
14.	The (1)	ply rating of t 4, 6 or 8	yres, use (2)	d in tractor 6, 8 or 12	is as :	(3)	2, 4 or 6	(4)	8, 10 or 12
		<u> </u>					<u> </u>		
15.	A h	and hoe can b	e attache	d with :					
15.	A h (1)	and hoe can be Blade	e attache (2)	d with : Tyre		(3)	Disc (4)	All	of the above
15. 16.	A h (1) The from	and hoe can b Blade mechanism of n the hopper a	e attache (2) E a seed t selected	d with : Tyre drill or fert l rates is ca	ilizer lled ?	(3) distrit	Disc (4) outor which deli	All o	of the above eds or fertilizers
15. 16.	A h (1) The from (1)	and hoe can be Blade mechanism of n the hopper a Met <mark>er</mark> ing me	e attache (2) E a seed t selected echan <mark>ism</mark>	d with : Tyre drill or fert l rates is ca	ilizer lled ? (2)	(3) distrit Boot	Disc (4) outor which deli	All o	of the above eds or fertilizers
15. 16.	A h (1) The from (1) (3)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper	e attache (2) E a seed t selected echanism	d with : Tyre drill or fert l rates is ca	ilizer lled ? (2) (4)	(3) distrik Boot Non	Disc (4) outor which deli the of these	All o ver see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) Stick	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper	e attache (2) E a seed t selected chanism her	d with : Tyre drill or fert l rates is ca	ilizer lled ? (2) (4)	(3) distrit Boot Non	Disc (4) outor which deli t te of these	All o ver see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) Stick (1)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see	e attache (2) E a seed t selected echanism her I is association	d with : Tyre drill or fert l rates is ca ciated with mity	ilizer lled ? (2) (4)	(3) distrik Boot Non	Disc (4) putor which delives the of these	All over see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) Stick (1) (2)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe	e attache (2) E a seed t selected chanism her i is association rformance	d with : Tyre drill or fert l rates is ca ciated with mity	illizer lled ? (2) (4)	(3) distrib Boot Non	Disc (4) outor which delives the of these	All over see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) Stick (1) (2) (3)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe power consu	e attache (2) E a seed t selected chanism ner I is association ed unifor rformance mption o	d with : Tyre drill or fert l rates is ca ciated with mity ce of seed drill	ilizer lled ? (2) (4)	(3) distrib Boot Non	Disc (4) outor which deli t e of these	All o	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) (1) (2) (3) (4)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe power consu seed calibrat	e attache (2) E a seed t selected chanism her I is associated unifor rformance mption of ion	d with : Tyre drill or fert l rates is ca ciated with mity ce of seed drill	ilizer lled ? (2) (4)	(3) distrib Non	Disc (4) outor which delives the of these	All over see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) Stic: (1) (2) (3) (4) The	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe power consu seed calibrat	e attache (2) E a seed t selected chanism her I is assoc ed unifor rformanc inption of ion	d with : Tyre drill or fert l rates is ca ciated with mity ce of seed drill ers of 4 - st	illizer lled ? (2) (4)	(3) distrit Non	Disc (4) outor which deli t e of these :	All o ver see	of the above eds or fertilizers
15. 16. 17.	A h (1) The from (1) (3) (1) (2) (3) (4) The (a)	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe power consu seed calibrat	e attache (2) E a seed t selected chanism er I is assoc ed unifor rformanc ion iring ord (b)	d with : Tyre drill or fert l rates is ca tiated with mity te of seed drill ers of 4 - st 1 - 2 - 3 -	ilizer lled ? (2) (4)	(3) distrik Boot Non 4 - cyli (c)	Disc (4) outor which delives the of these : inder engines are 1 - 3 - 4 - 2	All o ver see	of the above eds or fertilizers
15. 16. 17. 18.	A h (1) The from (1) (3) (1) (2) (3) (4) The (a) Wh	and hoe can be Blade mechanism of n the hopper a Metering me Furrow oper ky belt method testing of see seed drill pe power consu seed calibrat	e attache (2) E a seed t selected chanism ner I is association anotion ion iring ord (b) re is/are	d with : Tyre drill or fert l rates is ca ciated with mity se of seed drill ers of 4 - st 1 - 2 - 3 - correct ?	ilizer lled ? (2) (4) I roke, 4	(3) distrib Non 4 - cyl (c)	Disc (4) outor which delives the of these : inder engines are 1 - 3 - 4 - 2	All o ver see	of the above eds or fertilizers

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Α			5	SO8
19.	tract	is defined as the ratio of th tion device.	ie trac	ctor drawbar pull to the dynamic load on the
	(1)	Tractor power efficiency	(2)	Traction
	(3)	Traction efficiency	(4)	Coefficient of traction
20.	In D	Diesel cycle the heat is taken in at c	onsta	nt :
	(1)	Pressure	(2)	Volume
	(3)	Temperature	(4)	None of the above
21.	The	tilt angle of the disk plow is the di	isk til	ted backward at an angle of :
	(1)	42 to 45° (2) 60 to 90°		(3) 15 to 25° (4) 125 to 165°
22.	The	re are two main parts for shelling t	the gr	oundnut :
	(1)	two rollers having less clearance		
	(2)	crushing plates and grate		· · · · · ·
	(3)	a set of rollers with varying clear	rance	
	(4)	a rotary blades and plate		
23.	The elec	consumption of electricity in agi tric power in 1993 - 94 in In <mark>dia.</mark>	ricult	ure was about of the generated
	(1)	40 per cent (2) 30 per cer	nt	(3) 50 per cent (4) 35 per cent
24.	In c	omputation of depreciation of mac	hine '	value, the salvage value, is taken as :
	(1)	10% of operating cost	(2)	10% of capital invested
	(3)	15% of useful life of machine	(4)	5% of operating cost
25.	Flut	ed Feed type mechanism of seed d	rill co	nsists of :
	(1)	fluted wheel	(2)	feed roller
	(3)	feed cut-off and adjustable gate	(4)	all above
26.	The	main purpose of puddling is to :		
	(1)	reduce seepage	(2)	reduce leaching of water
	(3)	kill the weeds	(4)	both (2) and (3)

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

		Spike tooth conveyer	(2)	Digging blade	.7. A) (1)
		None of these	(4)	Both (1) and (2)	(3)
erature remain	temp	ssure and volume when	vith respect to pres	e change of state of gas w stant is called as :	
		isobaric change	(2)	isothermal change	(1)
		none of the above	(4)	adiabatic change	(3)
e to the extrem be at the cente	l knif hould	or pushes the pitman and center of knife section s	rank wheel pulls or s of the knife, the mower, means :	en the wrist pin on the c l of the in and out stroke he guards for a pitman	enc
Sofastication	(4)	(3) Perfection	Registration	Calibration (2)	(1)
			ntial in :	el Injection Pump is esse	
		petrol engines	(2)	diesel engines	(1)
		None of the above	(4)	(1) and (2)	(3)
			•		
			ver is to :	e main function of spray	31. The
		ve size	ver is to : drop <mark>lets o</mark> f effectiv	e main function of spray break the liquid into o	31. The (1)
		ve size nts	ver is to : droplets of effectiv ermly over the place	e main function of spray break the liquid into o distribute them unifo	31. The (1) (2)
		ve size nts excessive application	ver is to : droplets of effectiv ormly over the play of liquid to avoid	e main function of spray break the liquid into o distribute them unifor regulate the amount o	31. The (1) (2) (3)
		ve size nts excessive application	ver is to : droplets of effectiv ormly over the play of liquid to avoid	e main function of spray break the liquid into o distribute them unifor regulate the amount o all of the above	B1. The (1) (2) (3) (4)
		ve size nts excessive application rom :	ver is to : droplets of effectiv ormly over the play of liquid to avoid re of tyres varies fr	e main function of spray break the liquid into o distribute them unifor regulate the amount o all of the above	31. The (1) (2) (3) (4) 32. In
		ve size nts excessive application rom : 1.1 to 1.4 kg/cm ²	ver is to : droplets of effective ormly over the play of liquid to avoid re of tyres varies fr (2)	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressur- 2 to 2.5 kg/cm ²	B1. The (1) (2) (3) (4) B2. In (1)
	7	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ²	ver is to : droplets of effective ormly over the plan of liquid to avoid we of tyres varies for (2) (4)	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ²	31. The (1) (2) (3) (4) 32. In (1) (3)
piston is at the	vhen j	ve size nts excessive application from : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w	ver is to : droplets of effectiv ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the f	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In
piston is at the	vhen j	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke	ver is to : droplets of effective ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre (2)	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the to top of its stroke	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In (1)
piston is at the	vhen p	ve size nts excessive application from : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke idle condition	ver is to : droplets of effective ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre (2) (4)	e main function of spray break the liquid into o distribute them unifor regulate the amount o all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the top of its stroke middle of its stroke	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In (1) (3)
piston is at the	vhen j	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke idle condition given by :	ver is to : droplets of effective ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre (2) (4) cultural tractor is	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressure 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the top of its stroke middle of its stroke	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In (1) (3) 34. We
piston is at the	vhen p	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke idle condition given by : Pull × hitch height	ver is to : droplets of effective ormly over the plan of liquid to avoid ve of tyres varies for (2) (4) Top Dead Centre (2) (4) cultural tractor is	e main function of spray break the liquid into o distribute them unifor regulate the amount o all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the top of its stroke middle of its stroke eight transfer in the agric Pull × wheel base	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In (1) (3) 34. We
piston is at the	vhen j	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke idle condition given by : <u>Pull × hitch height</u> wheel track	ver is to : droplets of effective ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre (2) (4) cultural tractor is (2)	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressur 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the top of its stroke middle of its stroke middle of its stroke <u>Pull × wheel base</u> <u>hitch height</u>	31. The (1) (2) (3) (4) 32. In (1) (3) 33. In (1) (3) 34. We (1)
piston is at the	vhen j	ve size nts excessive application rom : 1.1 to 1.4 kg/cm ² 4 to 5.5 kg/cm ² (TDC) is the position, w bottom of its stroke idle condition given by : <u>Pull × hitch height</u> wheel track <u>Pull × wheel track</u>	ver is to : droplets of effective ormly over the plan of liquid to avoid re of tyres varies fr (2) (4) Top Dead Centre (2) (4) cultural tractor is (2) (4)	e main function of spray break the liquid into a distribute them unifor regulate the amount of all of the above power tillers the pressure 2 to 2.5 kg/cm ² 2.5 to 3.0 kg/cm ² two stroke engines, the top of its stroke middle of its stroke eight transfer in the agric <u>Pull × wheel base</u> hitch height <u>Pull × hitch height</u>	$ \begin{array}{c} 31. \text{The} \\ (1) \\ (2) \\ (3) \\ (4) \\ \end{array} $ $ \begin{array}{c} 32. \text{In} \\ (1) \\ (3) \\ \end{array} $ $ \begin{array}{c} 33. \text{In} \\ (1) \\ (3) \\ \end{array} $ $ \begin{array}{c} 34. \text{We} \\ (1) \\ (3) \\ \end{array} $

Α			7		SO8
35.	The	horizontal component of p	ull, perpendi	cular to the direction o	f motion is called :
	(1)	Lateral thrust ·	(2)	Side draft	
	(3)	Line of force	(4)	Centre of resistance	
36.	Imp	roved type of manually ope	erated fruit h	arvester is :	
	(1)	Bamboo cone type	(2)	Hold and twist type	
	(3)	Pull and cut type	(4)	All of the above	
37.	Min	imum soil manipulation, es	sential for till	age requirements of cro	p production is called
	(1)	 zero tillage	(2)	minimum tillage	
	(3)	conservation tillage	(4)	secondary tillage	
 38.	A se	emi - automatic potato plan	ter consists o	f :	
	(1)	hopper (2) me	tering disc	(3) furrow opener	(4) all of the above
<u> </u>	In d	ifferential unit of tractor, th	e <mark>beve</mark> l pinio	n, drives the :	
	(1)	Camshaft (2) Cr	ankshaft	(3) Crown gear	(4) Flywheel
40.	The deliv	operation of an electro-dyr very gun with :	amic sprayer	is based on the drople	ets emerging from the
	(1)	an atomizer	(2)	better penetration	
	(3)	extremely fine spray	(4)	an electric charge	
41.	Dur accu	ing winter season when atn imulated at of	nosphere is co the bin.	ool, moisture pick up b	y stored grains will be
	(1)	top	(2)	bottom	
	(3)	both location	(4)	none of these	
42.	In tl	he centrifugal cream separa	tor the cream	n is collected :	
	(1)	towards centre	(2)	towards periphery	
	(3)	both at centre and periph	ery (4)	none of the above	
90 00	~ ସମ୍ପ	MINIOR MINI / SPACE FUR P			ПТО

.

•

P.T.O.

٠

A 43. _ requires relatively higher power and is more susceptible to wear than other types of conveyor. (1)Belt conveyor (2)Screw conveyor (3) Bucket elevator (4)Pneumatic conveyor During sensible heating or cooling of air 44. remains constant. humidity ratio (1)wet bulb temperature (2) (3) enthalpy (4)relative humidity 45. _ sorters are fast, accurate and cause little damage to the fruit. (1)Weight Roller (3) Diverging belt (4)All of the above (2)46. ____ is the best type of separator to separate mustard seeds from wheat. Indented cylinder separator (2)Specific gravity separator (1)Centrifugal separator (4) Spiral separator (3) The relationship between thermal diffusivity (α), thermal conductivity (K), density(ρ) and 47. specific heat (C_p) of a material is given by : (1) $\alpha = \frac{K}{\rho \cdot C_P}$ (2) $\alpha = \frac{\rho}{K \cdot C_P}$ (3) $\alpha = \frac{K \cdot C_P}{\rho}$ (4) $\alpha = \frac{K \cdot \rho}{C_P}$ deflects the flow of milk back into float tank when the temperature of milk at 48. the end of holder tube of HTST Pasteurizer is below the predetermined point. Poppet valve Expansion valve (1)(2)(3)Flow diversion valve (4)Flow control value $\left[\frac{M-Me}{Mo-Me}\right]$ is known as _____. 49. (2)Moisture ratio (1)Critical moisture content Total heat Specific heat (3)(4) 50. _ spheroid is formed when an ellipse rotates about its major axis. (1)Prolate (2)Oblate Round (4)Conic (3)

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

Α			9	. SO8
51.		is used as a general pu	rpose wra	pping paper with good mechanical strength.
	(1)	Kraft paper	(2)	Grease paper
	(3)	Tissue paper	(4)	Sulphite paper
52.	The	process of dehydration in whi	ch moistu	re is removed by sublimation is known as :
	(1)	Foam mat drying	(2)	Spray drying
	(3)	Freeze drying	(4)	Pneumatic drying
53.	Whi	ich of the following grain drye	r is not a c	continuous flow non-mixing type ?
	(1)	LSU dryer	(2)	Recirculatory batch dryer
	(3)	Baffle dryer	(4)	All of the these
54.		separates the material	on the ba	sis of length of material.
	(1)	spiral separater	(2)	disk separater
	(3)	velvesse belt separater	(4)	specific gravity separater
55.		indicates the uniformi	ty of grine	d in resultant product and is defined as the
	(1)	Dryness fraction	(2)	Screen effectiveness
	(3)	Fineness modulus	(4)	Mixing index
56.	Cen elev	trifugal discharge type	is us	sed extensively for handling small grains in
	(1)	Belt Conveyor	(2)	Chain Conveyer
	(3)	Screw Conveyor	(4)	Bucket Elevator
57.	1-1	RH=e ^{-CTMen} is the	where,	
	RH	=Relative humidity, decimal;		
	T =	Absolute temperature, K;		
	Me	=EMC, per cent (db);		
	C a	nd n=constants;		
	(1)	BET equation	(2)	Gibb's equation
	(3)	Henderson's equation	(4)	Baker and Arkema equation

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

•

.

.

P.T.O.

58. If ρ_b and ρ_t are the bulk density and true density of the grain respectively then void fraction or packing factor in a grain bed can be expressed as :

	(1)	$1 - \frac{\rho_{\rm b}}{\rho_{\rm t}} \qquad (2) \frac{\rho_{\rm b}}{\rho_{\rm t}}$		$(3) \frac{\rho_b}{\rho_t} - 1$	$(4) \qquad 1 - \frac{\rho_t}{\rho_b}$	
	 The	moisture content of solid in eq	uilibrium	with the surrour	ding conditions is :	
	(1)	Equilibrium moisture content	(2)	Moisture conte	nt wet basis	
	(3)	Moisture content dry basis	(4)	None of the abo	ove	
60.	The	Duhring plot is used to find _				
	(1)	Effectiveness of evaporation				
	(2)	Pasteurization effect				
	(3)	Pressure difference in evapor	ator			
	(4)	The boiling point elevation			,	
61.	The	condition for water at which a	II three st	tates exist togethe	r is called :	
	(1)	boiling point	(2)	freezing point		

- (3) single point (4) triple point
- 62. Tylor series sieves used for grading of food grains should have consecutive sieves having screen opening sizes D_1 and D_2 such that :

(1)
$$\frac{D_1}{D_2} = 2$$
 (2) $\frac{D_1}{D_2} = \sqrt{2}$ (3) $\frac{D_1}{D_2} = \sqrt[3]{2}$ (4) $\frac{D_1}{D_2} = \sqrt[4]{2}$

- 63. Which of the following model can be used to explain rheological behaviour of biological materials ?
 - (1) Ficks model (2) Kelvin model (3) Planks model (4) Bonds model
- 64. In order to freeze an ice-cream mix its thermodynamic temperature is :
 - (1) higher than the freezing point of water
 - (2) Iower than the freezing point of water
 - (3) equal to the freezing point of water
 - (4) dependent upon water content of ice-cream mix

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

 65. In Attrition mill, the material is reduced by	A			11	SO8
(1) impact (2) crushing (3) shear (4) crushing and shear 66. When the value of n < 1 for shear. Stress-shear rate curve of fluid, the fluid is called a	65.	In A	attrition mill, the material is reduce	ed by	·
(3) shear (4) crushing and shear 66. When the value of n < 1 for shear. Stress-shear rate curve of fluid, the fluid is called it (1) Newtonian fluid (2) Pseudoplastic fluid (3) Dilatant fluid (4) None of above 67		(1)	impact	(2)	crushing
 66. When the value of n < 1 for shear. Stress-shear rate curve of fluid, the fluid is called i (1) Newtonian fluid (2) Pseudoplastic fluid (3) Dilatant fluid (4) None of above 67		(3)	shear	(4)	crushing and shear
(1) Newtonian fluid (2) Pseudoplastic fluid (3) Dilatant fluid (4) None of above 67.	66.	Whe	en the value of n < 1 for shear. Stre	ess-sh	near rate curve of fluid, the fluid is called as :
(3) Dilatant fluid (4) None of above 67		(1)	Newtonian fluid	(2)	Pseudoplastic fluid
 67 is a point on Force-deformation curve which shows failure in microstruct of the material. (1) Rupture point (2) Bioyield point (3) Creep (4) Stifness 68. For size reduction Rittinger's Law always gives value for energy requirem than Kick's Law. (1) higher (2) lower (3) same (4) none of the failed force is called as : (1) Critical velocity at which net gravitational accelerating force equals the resisting upw drag force is called as : (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (2) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(3)	Dilatant fluid	(4)	None of above
(1) Rupture point (2) Bioyield point (3) Creep (4) Stifness 68. For size reduction Rittinger's Law always gives value for energy requirem than Kick's Law. value for energy requirem than Kick's Law. (1) higher (2) lower (3) same (4) none of the formed on free vertice equals the resisting upw drag force is called as : (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents	67.	of th	is a point on Force-deformaterial.	ation	curve which shows failure in microstructure
(3) Creep (4) Stifness 68. For size reduction Rittinger's Law always gives value for energy requirem than Kick's Law. value for energy requirem than Kick's Law. (1) higher (2) lower (3) same (4) none of the formed on the energy requirem than Kick's Law. (1) higher (2) lower (3) same (4) none of the formed on the energy requirem than Kick's Law. (1) Critical velocity (2) Centrifuging velocity (3) (3) Terminal velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) (1) (2) (2) (3) (4) (2) (3) 71. St. Venant body represents		(1)	Rupture point	(2)	Bioyield point
 68. For size reduction Rittinger's Law always gives value for energy requirem than Kick's Law. (1) higher (2) lower (3) same (4) none of the field of the gravitational accelerating force equals the resisting upw drag force is called as : (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(3)	Creep	(4)	Stifness
(1) higher (2) lower (3) same (4) none of the 69. The velocity at which net gravitational accelerating force equals the resisting upw drag force is called as : (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (2) increase in milk as : (1) reduction in curd tension (2) Homogenization causes the marked changes in milk as : (1) reduction in curd tension	68.	For : than	size reduction Rittinger's Law alwant Kick's Law.	ays gi	ves value for energy requirement
 69. The velocity at which net gravitational accelerating force equals the resisting upw drag force is called as : (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(1)	higher (2) lower		(3) same (4) none of these
 (1) Critical velocity (2) Centrifuging velocity (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mass the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 	<u> </u>	The drag	velocity at which net gravitation g force is called as :	al acc	celerating force equals the resisting upward
 (3) Terminal velocity (4) None of above 70. Angle between base and slope of the cone formed on free verticle fall of the grain mass the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(1)	Critical velocity	(2)	Centrifuging velocity
 70. Angle between base and slope of the cone formed on free verticle fall of the grain mas the horizontal plane is : (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(3)	Terminal velocity	(4)	None of above
 (1) Triangle (2) Angle of Repose (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 	70.	Ang the 2	le between base and slope of the co horizontal plane is :	one fo	ormed on free verticle fall of the grain mass to
 (3) Tangent (4) Quadrangle 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(1)	Triangle	(2)	Angle of Repose
 71. St. Venant body represents (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(3)	Tangent	(4)	Quadrangle
 (1) ideal plastic behaviour (2) ideal elastic behaviour (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 	71.	St, V	Venant body represents		
 (3) ideal viscous behaviour (4) initial elastic and then plastic behaviou 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(1)	ideal plastic behaviour	(2)	ideal elastic behaviour
 72. Homogenization causes the marked changes in milk as : (1) reduction in curd tension (2) increase in viscosity 		(3)	ideal viscous behaviour	(4)	initial elastic and then plastic behaviour
(1) reduction in curd tension (2) increase in viscosity	72.	Hor	nogenization causes the marked ch	ange	s in milk as :
		(1)	reduction in curd tension	(2)	increase in viscosity
(3) improvement in richness of milk (4) all of these		(3)	improvement in richness of milk	(4)	all of these
कच्च्या कामासाती जागा /SPACE FOR ROUGH WORK		या का			

P.T.O.

	The	senti impiricui							
	(1 -	$- Rh) = e \times p(-$	CT _{ob} M _e) has been	n deve	loped	l by		
	(1)	Smith			(2)	Nels	son		
	(3)	Chung and F	fost		(4)	Hen	Iderson		
74.	Spee	cific gravity see	d separa	ter is used	for gr	ading	of seeds on th	e basis of	
	(1)	different size	and diff	erent speci	fic gra	vity			
	(2)	same size and	d differer	nt specific g	gravity	/			
	(3)	different size	and sam	ne specific g	gravity	7			
	(4)	same size and	d same s	pecific grav	vity				
75.	The cont	final weight of tent (db) :	2000 kg	of Paddy a	at 25%	Moist	ture content (d	lb) dried	to 14% moisture
	(1)	400 kg	(2)	800 kg		(3)	1600 kg	(4)	2000 kg
	Suit	able moisture c	ontent fo	or safe stor	age of	nadd		ge of :	
76.	(1)	4 - 6%	(2)	10 - 12%	uge or	(3)	16 - 18%	(4)	22 - 24%
76. 	(1) 	4 - 6% hari type grain	(2) storage	10 - 12%	uge of	(3)	l India is mad	(4) e up of :	22 - 24%
76. 77.	(1) Buk (1)	4 - 6% hari type grain wood	(2) storage	10 - 12%	uge of ised in (2)	(3) rura stra	l India is mad	(4) e up of :	22 - 24%
76. 77.	(1) Buk (1) (3)	4 - 6% hari type grain wood mud	(2) storage	10 - 12%	uge of 1sed ir (2) (4)	(3) rura stra galv	l India is mad wanized iron	(4) e up of :	22 - 24%
76. 77. 78.	(1) Buk (1) (3) Dry	4 - 6% hari type grain wood mud ing of paddy av	(2) storage	10 - 12% structure, u ve high ten	ised ir (2) (4)	(3) rura stra galv ure ca	l India is mad w anized iron	(4) e up of :	22 - 24%
76. 77. 78.	(1) Buk (1) (3) Dry (1)	4 - 6% hari type grain wood mud ing of paddy at	(2) storage t excessiv	10 - 12% structure, u ve high ten of broken r	used ir (2) (4) nperat	(3) rura stra galv ure ca	l India is mad w vanized iron	(4) e up of :	
76. 77. 78.	(1) Buk (1) (3) Dry (1) (2)	4 - 6% hari type grain wood mud ing of paddy at increases per reduces quan	(2) storage t excessiv centage itity of ri	10 - 12% structure, u ve high ten of broken r ce	used in (2) (4) nperat	(3) rura stra galv ure ca	l India is mad w vanized iron	(4) e up of :	
76. 77. 78.	(1) Buk (1) (3) Dry (1) (2) (3)	4 - 6% hari type grain wood mud ing of paddy at increases per- reduces quan reduces quali	(2) storage t excessiv centage tity of rice	10 - 12% structure, u ve high ten of broken r ce	used ir (2) (4) nperat	(3) o rura stra galv ure ca	l India is mad w anized iron	(4) e up of :	
76. 77. 78.	(1) Buk (1) (3) Dry (1) (2) (3) (4)	4 - 6% hari type grain wood mud ing of paddy at increases per reduces quan reduces quali all of the abo	(2) storage t excessiv centage o tity of rice ve	10 - 12% structure, u ve high ten of broken r ce	used in (2) (4) nperat	(3) o rura stra galv ure ca	l India is mad w vanized iron	(4) e up of :	
76. 77. 78. 79.	(1) Buk (1) (3) Dry (1) (2) (3) (4) The	4 - 6% hari type grain wood mud ing of paddy av increases per reduces quan reduces quali all of the abo	(2) storage t excessive centage tity of rice ve nching o	10 - 12% structure, u ve high ten of broken r ce e	used ir (2) (4) nperat ice	(3) o rura stra galv ure ca	l India is mad w anized iron	(4) e up of :	
76. 77. 78. 79.	(1) Buk (1) (3) Dry (1) (2) (3) (4) The (1)	4 - 6% hari type grain wood mud ing of paddy at increases per reduces quali all of the abo	(2) storage t excessiv centage of tity of rice ve nching of microorg	10 - 12% structure, u ve high ten of broken r ce e of vegetable ganisms	used in (2) (4) nperat ice es is : (2)	(3) rura stra galv ure ca	ill selected mid	(4) e up of :	22 - 24%
76. 77. 78. 79.	(1) Buk (1) (3) Dry (1) (2) (3) (4) The (1) (3)	4 - 6% hari type grain wood mud ing of paddy av increases per- reduces quali all of the abo	(2) storage t excessive centage tity of rice ve nching of microors enzymes	10 - 12% structure, u ve high ten of broken r ce e of vegetable ganisms	used ir (2) (4) nperat ice es is : (2) (4)	(3) rura stra galv ure ca	I India is mad Wanized iron uses : ill selected mid e of the above	(4) e up of :	22 - 24%
76. 77. 78. 79. 80.	(1) Buk (1) (3) Dry (1) (2) (3) (4) The (1) (3)	4 - 6% hari type grain wood mud ing of paddy at increases per reduces quali all of the abo purpose of bla to inactivate to inactivate	(2) storage t excessiv centage of tity of rice ve nching of microors enzymes les tend	10 - 12% structure, u ve high ten of broken r ce e of vegetable ganisms s s to remain	ased in (2) (4) nperat ice es is : (2) (4) n near	(3) rura stra galv ure ca to k non-	I India is mad wanized iron uses : . ill selected mid e of the above bottom of con	(4) e up of : croorgani	22 - 24%
76. 77. 78. 79. 80.	(1) Buk (1) (3) Dry (1) (2) (3) (4) The (1) (3) 	4 - 6% hari type grain wood mud ing of paddy av increases per- reduces quali all of the abo purpose of bla to inactivate to inactivate to inactivate ration.	(2) storage t excessiv centage tity of rice ve nching o microorg enzymes les tend	10 - 12% structure, u ve high ten of broken r ce e of vegetable ganisms s s to remain	ased ir (2) (4) nperat ice es is : (2) (4) n near	(3) rura stra galv ure ca to k non-	I India is mad Wanized iron uses : ill selected mid e of the above bottom of con	(4) e up of : croorgani	22 - 24%

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

SO8

			15		500
81.	If fu	use in power supply circuit of ele	ectric mo	otor blows off, one should	check
	(1)	Grounded contacts	(2)	Shorted coil	
	(3)	Rating of the fuse wire	(4)	All of the above	
82.	Whi	ich of the following biogas plant	does no	ot supply gas at constant p	ressure ?
	(1)	KVIC type biogas plant	(2)	Janta biogas plant	
	(3)	Pragati design biogas plant	(4)	Ganesh biogas plant	
83.	If th	e velocity of wind at one place is	s double	ed, the available wind pow	er will :
	(1)	be doubled	(2)	be increased four fold	
	(3)	be increased eight times	(4)	remains same	
84.	The	optimum pH and temperature respectively.	e for hig	ther biogas production ar	e and
	(4)		(0)		
	(1)	4 to 6 ; 10° to 20°C	(2)	/ to 7.5 ; 35° to 38°C	
	(1) (3)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C	(2)	8.5 to 9.5 ; 20° to 30°C	
85.	(1) (3) In d (1)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200	(2) (4) ature ac	$7 \text{ to } 7.5 \text{ ; } 35^\circ \text{ to } 38^\circ \text{C}$ 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4	e vessel is around :) 350-400°C
85. 	(1) (3) In d (1) In b	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 biogas utilization for Spark Ignitic	(2) (4) ature ac)°C on (SI) e	 7 to 7.5; 35° to 38°C 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 ongines. 	e vessel is around :) 350-400°C
85. 86.	(1) (3) In d (1) In b (a)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignitic SI engines can run completely	(2) (4) ature ac)°C on (SI) e on biog	7 to 7.5 ; 35° to 38°C 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 engines.	e vessel is around :) 350-400°C
85. 	(1) (3) In d (1) In b (a) (b)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i	(2) (4) ature ac)°C on (SI) e on biog inlet ma	 A to 7.5; 35° to 38°C 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4) Angines. as. nifold and air cleaner pipe 	e vessel is around :) 350-400°C
85. 	(1) (3) In d (1) In b (a) (b) (c)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 biogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i It can develop 95% maximum	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p	 A to 7.5; 35° to 38°C. 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4) angines. as. nifold and air cleaner piperower. 	e vessel is around :) 350-400°C
85.	(1) (3) In d (1) In b (a) (b) (c) (d)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p anced to	 A to 7.5; 35° to 38°C 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 angines. as. nifold and air cleaner pipe ower. 45° BTDC. 	e vessel is around :) 350-400°C
85.	(1) (3) In d (1) In b (a) (b) (c) (d) Cor	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 biogas utilization for Spark Ignition SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are :	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p anced to	 A to 7.5; 35° to 38°C 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 angines. as. nifold and air cleaner pipe ower. 45° BTDC. 	e vessel is around :) 350-400°C
85.	(1) (3) In d (1) In b (a) (b) (c) (d) Cor (1)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are : (a) and (b) only	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p anced to (2)	 A to 7.5; 35° to 38°C. 8.5 to 9.5; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4) angines. as. nifold and air cleaner pipe ower. 45° BTDC. (b) and (c) only 	e vessel is around :) 350-400°C
85.	(1) (3) In d (1) In b (a) (b) (c) (d) Cor (1) (3)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are : (a) and (b) only (c) and (d) only	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p anced to (2) (4)	 7 to 7.5 ; 35° to 38°C 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 angines. as. nifold and air cleaner pipe ower. 45° BTDC. (b) and (c) only (a) and (d) only 	e vessel is around :) 350-400°C
85. 86. 87.	(1) (3) In d (1) In b (a) (b) (c) (d) Cor (1) (3) As (4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignition SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are : (a) and (b) only (c) and (d) only the number of blades (solidity) of	(2) (4) ature ac)°C on (SI) e on biog inlet ma break p anced to (2) (4) f wind r	 7 to 7.5 ; 35° to 38°C 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 and air cleaner pipe ower. 45° BTDC. (b) and (c) only (a) and (d) only mill decreases the tip-speed 	e vessel is around :) 350-400°C
85. 86. 87.	(1) (3) In d (1) In b (a) (b) (c) (d) (c) (d) (c) (d) (c) (d) (c) (1) (3) As ((1)	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 biogas utilization for Spark Ignitic SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are : (a) and (b) only (c) and (d) only the number of blades (solidity) of decreases (2) increase	(2) (4) ature ac p°C on (SI) e on biog inlet ma break p anced to (2) (4) f wind n es	 7 to 7.5 ; 35° to 38°C 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4) angines. as. nifold and air cleaner pipe ower. 45° BTDC. (b) and (c) only (a) and (d) only nill decreases the tip-speed (3) becomes one (4) 	e vessel is around :) 350-400°C
85. 86. 87. 88.	(1) (3) In d (1) In b (a) (b) (c) (d) Cor (1) (3) As ((1) In v spee	4 to 6 ; 10° to 20°C 9 to 10 ; 38° to 55°C ish type solar cooker the tempera 100 - 150°C (2) 151-200 iogas utilization for Spark Ignition SI engines can run completely It requires modification in air i It can develop 95% maximum Ignition timing should be adva rect statements are : (a) and (b) only (c) and (d) only the number of blades (solidity) of decreases (2) increase wind mill, about add ed system as compared with the	(2) (4) ature ac p°C on (SI) e on biog inlet ma break p anced to (2) (4) f wind r es itional p constan	 7 to 7.5 ; 35° to 38°C 8.5 to 9.5 ; 20° to 30°C hieved at the bottom of the (3) 201-300°C (4 (3) 201-300°C (4 engines. as. nifold and air cleaner pipe ower. 45° BTDC. (b) and (c) only (a) and (d) only mill decreases the tip-speed (3) becomes one (4 bower output can be product speed system. 	e vessel is around :) 350-400°C d-ratio) none of these uced by a variable

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

•

A

SO8		

89.	Bioe	nergy is classified into	three mair	n group	es.		
	(a)	Wood groups					
	(b)	Agro - fuels					
	(c)	Urban waste - based	fuels				
	This	classification is done l	ру :				
	(1)	UNO (2)	WHO		(3) FAO	(4)	CWO
90.	The	two safety codes cons	ider curren	nt value	es up to	as safe.	
	(1)	1.002 or 1.005 amp		(2)	0.003 or 0.005 at	mp	
	(3)	2.001 or 2.004 amp		(4)	None of the above	ve	
91.	Elec the	tric motors operate at IC engine having ther	efficiencies mal efficies	rangir ncies b		_ to	as against
	(1)	40 to 80% ; 25 to 309	%	(2)	50 to 100% ; 26 t	to 30%	
	(3)	50 to 90% ; 28 to 309	%	(4)	None of the above	ve	·v
92.	Eve and	n during the on-period pulsating current of	, the maxim	ium vai is cons	lue of the current n sidered satisfactory	nust not ex y.	ceed
	(1)	0.008 amp ; 0.005 ar	np	(2)	0.003 amp ; 0.00	2 amp	
		1.005	nn	(4)	None of the abov	ve	
	(3)	1.005 amp ; 1.002 ar	···P	(1)	None of the above		
 93.	(3) The forc	law states that the cur	rent in a d- rtional to th	c circui ne resis	it is directly proportion	rtional to t	he electromotive
 93.	(3) — — — — — — — — — — — — — — — — — — —	law states that the cur e and inversely propor Faraday's law	rent in a d- rtional to th	c circui ne resis (2)	it is directly proportance : Current's law	rtional to t	he electromotive
 93.	(3) The forc (1) (3)	law states that the cur e and inversely propor Faraday's law Voltage law	rent in a d- rtional to th	c circui ne resis (2) (4)	it is directly propor tance : Current's law Ohm's law	rtional to t	he electromotive
93. 94.	(3) The forc (1) (3) (a)	law states that the cur e and inversely propor Faraday's law Voltage law It is a highly inflamm	rent in a d- rtional to th nable liquid	c circui ne resis (2) (4) 1.	it is directly proportance : Current's law Ohm's law	rtional to t	he electromotive
93. 94.	(3) The forc (1) (3) (a) (b)	law states that the cur e and inversely propor Faraday's law Voltage law It is a highly inflamm It consists essentially	rent in a d- rtional to th nable liquic	c circui re resis (2) (4) 1. 0 hydro	it is directly proportance : Current's law Ohm's law	rtional to t	he electromotive
93. 94.	(3) The forc (1) (3) (a) (b) (c)	law states that the cur e and inversely propor Faraday's law Voltage law It is a highly inflam It consists essentially Density at 15°C rang	rent in a d- rtional to th nable liquid v of C ₅ - C ₁ ges between	(2) (2) (4) 1. 0 hydro	it is directly proportance : Current's law Ohm's law	rtional to t	he electromotive
93. 94.	(3) The forc (1) (3) (a) (b) (c) This	I.005 amp ; I.002 ar law states that the cur e and inversely propor Faraday's law Voltage law It is a highly inflam It consists essentially Density at 15°C rang s is specifically true ab	rent in a d- rtional to th nable liquic v of C ₅ - C ₁ ges between out :	c circui ne resis (2) (4) 1. 0 hydro n 0.71 a	it is directly proportance : Current's law Ohm's law ocarbons.	rtional to t	he electromotive

(a) Air density (b) Wake loss Blade contamination loss (c)Wind turbine availability and loss (d) Transformer and line loss (e) Grid and controller loss (f) **Answer** options : (a), (b) and (c) only (d) and (e) only (1)(2)All of these (3)(f) only (4)96. Issues with 100% extension of power to rural areas are : The use of power being small and seasonal. (a) The rural schemes fail to yield revenues commensurate with the capital spent on (b)taking power to the little pockets of population. To overcome the increasing costs of rural electrification schemes extensive research (c)into cheaper methods of supplying electricity to rural areas is must. All the statements above are : All are false All are partially true (1)(2)All are true (3)All are partially false (4)In relation between earth and sun. Sun is on the average 1.5×10^8 km away from the earth. (a) Earth has a mass of 1.989×10^{30} kg. (b) Sun has 332150 times the mass of earth. (c)Choose the correct statements : (a) and (c) only (1)(a) only (2)(c) only (3)(4)(b) only 98. In Biomass. (a) CHN (i) changes in ash melting behaviour, ash utilization (b) Sulphur and chlorine (ii) calorific value, NO, emission Major elements pollution, aerosol formation (c)(iii) (d) Minor elements corrosion, pollution (SO_y) (iv)Correct sequence is : (d) (a) (b) (c) (1)(vi) (ii) (i) (iii) (2)(ii) (iv) (i) (iii) (3)(ii) (i) (iv) (iii) (4) (iii) (iv) (i) (ii)

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

Α

95.

In wind mill, micrositing and proper project formation can minimize losses due to.

SO8

99. Electric motors can be used in farm work. Induction motors may	be classified as :
--	--------------------

- (1) single phase motors and two phase motors
- (2) single phase motors and three phase motors
- (3) single phase motors and polyphase motors
- (4) none of the above

100. In briquetting process.

- (a) Biomass densification is carried out
- (b) Binder can be used
- (c) Loose biomass energy is 100 200 kg/m³

Answer options :

- (1)
 (a) and (c) True
 (2)
 (b) and (c) True

 (3)
 (a) and (b) True
 (4)
 (a) and (c) False

101. Factors to be considered in the location of windows are :

- (1) Distribution of light (2) Prevalent direction of wind
- (3) Control of ventilation (4) All of the above

102. The density index of most of the building material is :

- (1) Less than unity (2) More than unity
 - (3) Unity (4) None of the above

103. An uneven span type green house is constructed on

- (1) plain surface
 (2) hilly terrain
 (3) sandy surface
 (4) all of the above
- **104.** The earthing of electric fencing is done by placing a metal rod to a depth below ground level about :
 - (1) 15 cm (2) 30 cm (3) 45 cm (4) 60 cm
- **105.** Built up covered area measured at the floor level of the basement or any storey of a building is generally known as :
 - (1) Carpet area (2) Plinth area
 - (3) Floor area (4) None of the above

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

17

Α					17				SO8
106.	A co	ouple - close ro	of can b	e adopted	econoi	micall	y upto a span	of	·
	(1)	3.50 m	(2)	4.20 m		(3)	4.20 cm	(4)	5.50 m
107.	For prov	keeping door is vided on each s	n positio side of d	on generall Oor frame	y a mil is knov	d stee vn as	l flat bars of s :	ection 300	mm×6mm are
	(1)	Hold fast	(2)	Jamb		(3)	Still	(4)	Head
108.	The	bearing capaci	ty of soi	l in kN/m	n^2 is the	ratio	of		
	(1)	maximum loa	ad to are	a of steel	plate				
	(2)	area of steel _J	plate to a	maximum	load				
	(3)	factor of safe	ty to bea	aring capa	city of s	soil			
	(4)	soil load to fa	actor of s	safety					
109.	In el of a	ectric fencing fr second and of	rom safe f for abo	ty point of out	view, tl	he circ a sec	ruit may be kep rond.	pt on for a	bout
		1 1		1 1			4 3		14
	(1)	$\overline{6'}$ $\overline{8}$	(2)	5' 10		(3)	5' 10	(4)	10 5
110.	A k	ing post truss i	s suitabl	e for roofs	s of spa	n vary	ying from		
	(1)	5 - 8 m	(2)	2 - 6 m		(3)	4 - 9 m	(4)	5 - 10 m
111.	Wha slop	at is the vertica e 6 pe <mark>r ce</mark> nt ?	l interva	al betweer	n contoi	ur bur	nd using C.E.	Ramser f	ormula for land
	(1)	1.0 m	(2)	1.1 m		(3)	1.2 m	(4)	1.3 m
112.	Max	imum angle or	slope a	t which th	e soil re	emain	s stable is call	ed as :	
	(1)	angle of repo	se		(2)	angl	le of inclinatio	n	
	(3)	angle of tilt			(4)	ang	le of sublimat	ion	
113.	Hyp	osometric curve	e shows	the relatio	nship b	etwee	en :		
	(1)	relative grad:	ient and	relative a	rea of d	Iraina	ge basin		
	(2)	relative relief	and rela	ative heigl	nt				
	(3)	relative heigh	nt and re	elative area	a of dra	inage	basin		
	(4)	relative strea	m lengtł	n and relat	tive are	a of d	rainage basin		

.

.

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

SO8

	varie	ous purposes ?							
	(1)	Short term			(2)	Lon	g term		
	(3)	Roof top			(4)	Nor	e of the above		
115.	In th as w	ne rational metho which of the follo	od for p wing ?	prediction	n of peal	< rate	of run-off, the ra	infall ir	ntensity is taken
	(1)	As equal to inf	iltratio	n rate of	soil				
	(2)	As equal to ϕ i	ndex o	f soil					
	(3)	For a duration	equal	to the tir	ne of co	ncentr	ation .		
	(4)	As unity							
116.	Duri supp	ing a particular port the healthy	growin crop g	ig season rowth, it	, when is said	a soil to	moisture and ra	infall a	ure indequate to
	(1)	Vegetative dro	ught		(2)	Hyd	lrological droug	nt	
	(3)	Agricultural d	rought		(4)	Met	eorological drou	ght	
117.	Wha	at is the relation	of eros	ive powe	er of wa	ter flo	w and velocity o	f ru n-o	ff?
	(1)	Square of velo	city		(2)	Cub	e of velocity		
	(3)	Equal to veloci	ity		(4)	$\sqrt{V_0}$	elocity		
118.	Wha	at is th <mark>e s</mark> amplin	g ef <mark>fic</mark> ie	ency o <mark>f V</mark>	/UN bed	l load	samples ?		
	(1)	60%	(2)	65%		(3)	70%	(4)	7 5 %
119.	Whi	ch is the alterna	te nam	e for risi	ng limb	of hyd	trograph ?		
	(1)	Reverse curve			(2)	Con	centration curve	5	
	(3)	Straight curve			(4)	S - 0	curve		
120.	Reco	ommended safe	velocit	y of chan	nel flow	with	good vegetative	cover	is :
	(1)	1.20 m/sec	(2)	1.50 m	/sec	(3)	0.90 m/sec	(4)	0.60 m/sec
121.	The	material bounci	ng alor	ng the be	d is nam	ned by	which load ?		
	(1)	Contact	(2)	Saltatio	on	(3)	Suspended	(4)	Bed
	 का दिना	व्यामधी स्वाम १००				PV		,,	

SO8

18

114. Which type of run-off harvesting method is mainly done for building a big water stock for

A

Ŋ

122. In gully control structure design, the flow velocity is reduced by :

 (2) By providing stone pitching of downstream channel (3) By creating hydraulic jump (4) By providing designed side walls 123. Graphical representation of rainfall parameters as : X axis - cumulative time Y axis - cumulative rainfall is titled as (1) Mass rainfall curve (2) Rainfall Intensity Histograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (ii) Stream discharge versus percent time (b) Scurve (iii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (ii) (ii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (iii) (4) (i) (iv) (iii) 		(1)	Ву р	rovidi	ng loi	ngitud	linal s	ills							
 (3) By creating hydraulic jump (4) By providing designed side walls 123. Graphical representation of rainfall parameters as : X axis - cumulative time Y axis - cumulative rainfall is titled as (1) Mass rainfall curve (2) Rainfall Intensity Histograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (ii) Stream discharge versus percent time (b) Scurve (iii) Flood peak-area relation (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) 		(2)	Ву р	rovidi	ing sto	one pi	itching	g of d	owns	tream	channel				
 (4) By providing designed side walls 123. Graphical representation of rainfall parameters as : X axis - cumulative time Y axis - cumulative rainfall is titled as Mass rainfall curve Rainfall Intensity - Hytograph Unit Hydrograph 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? 2.5 m 3.0 m 3.5 m 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? 24 m 25 m 26 m 26 m 27 m 26 m 26 m 27 m 126. Set 'A' Set 'B' Stevelope curve Flood peak-area relation Double mass curve Unit Hydrograph Flow-duration curve Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (ii) (iii) (iii) (iii) (i) (iv) (ii) (i) (iv) (ii) (i) (iv) (ii) 		(3)	By ca	reatin	g hyd	raulic	jump	,							
 123. Graphical representation of rainfall parameters as : X axis - cumulative time Y axis - cummulative rainfall is titled as Mass rainfall curve Rainfall Intensity - Hytograph Unit Hydrograph 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? 2.5 m 3.0 m 3.5 m 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? 2.4 m 2.5 m 2.5 m 2.5 m 2.6 m 2.6 m 2.7 m 2.7 m 126. Set 'A' Set 'B' Stream discharge versus percent time Scurve Flood peak-area relation Stream flow versus time The correct sequence is : (a) (b) (c) (d) (ii) (iii) (iii) (iii) (i) (iii) (iii) (i) (iii) 		(4)	Ву р	rovidi	ng de	signe	d side	walls	;						
X axis - cumulative time Y axis - cummulative rainfall is titled as (1) Mass rainfall curve (2) Rainfall Intensity Histograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (i) Stream discharge versus percent time (b) 5-curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time ' The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)	123.	Graj	ohical	repres	sentat	ion of	rainf	all pa	ramet	ters as					
Y axis - cummulative rainfall is titled as (1) Mass rainfall curve (2) Rainfall Intensity Histograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent ? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (i) Stream discharge versus percent time (b) S-curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time ' The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)		X ax	is - cu	mulat	ive tii	ne									
 (1) Mass rainfall curve (2) Rainfall Intensity Histograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (b) Scurve (c) Double mass curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (4) (i) (iv) (ii) 		Y ax	is - cu	mmul	lative	rainfa	ıll is ti	tled a	s						
 (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (3) Rainfall Intensity - Hytograph (4) Unit Hydrograph (4) What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m (1) 2.5 m (2) 3.0 m (3) 2.5 m (4) 4.0 m (2) 25 m (3) 26 m (4) 60 m (3) Envelope curve (i) Stream discharge versus percent time (b) S-curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (iii) (iv) (v) (i) (iv) (ii) 		(1)	Mass	s rainf	all cu	rve			(2)	Rair	ıfall Inter	nsity Hi	stogra	ph	
 124. What is the design depth of parabolic shaped waterway having hydraulic radius 2.0 m? (1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (b) S-curve (c) Double mass curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is: (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (iii) (4) (i) (iv) (iii) (v) 		(3)	Rain	fall In	tensit	y - H	ytogra	ıph	(4)	Unit	t Hydrog	raph			
(1) 2.5 m (2) 3.0 m (3) 3.5 m (4) 4.0 m 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (i) Stream discharge versus percent time (b) S-curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)	124.	Wha 2.0 t	at is ti n ?	he de	sign	deptł	ı of p	arabo	olic sl	naped	waterw	ay hav	ing hy	drau	ılic radius
 125. What is the horizontal distance in metre between two terraces having land slope of 4 per cent? (1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (b) S-curve (c) Double mass curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v) 		(1)	2.5 n	n		(2)	3.0 r	n		(3)	3.5 m		(4)	4.0	m
(1) 24 m (2) 25 m (3) 26 m (4) 60 m 126. Set 'A' Set 'B' (a) Envelope curve (i) Stream discharge versus percent time (b) S-curve (ii) Flood peak-area relation (c) Double mass curve (iii) Unit hydrograph (d) Flow-duration curve (iv) Change in region of raingauge station (v) Stream flow versus time The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)	125.	What of 4	at is t per ce	he ho ent?	rizon	tal d	istanc	e in	metre	betw	een two) terrac	es hav	ing 1	land slope
126.Set 'A'Set 'B'(a)Envelope curve(i)Stream discharge versus percent time(b)S-curve(ii)Flood peak-area relation(c)Double mass curve(iii)Unit hydrograph(d)Flow-duration curve(iv)Change in region of raingauge station (v)(v)Stream flow versus timeThe correct sequence is :(a)(b)(c)(d)(i)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(iii)(i)(iii)(i)(i)(i)(ii)(iii)(iii)(iii)(iii)(iii)(iii)(i)		(1)	24 m	ı		(2)	25 n	1		(3)	26 m		(4)	60 1	m
(a)Envelope curve(i)Stream discharge versus percent time(b)S-curve(ii)Flood peak-area relation(c)Double mass curve(iii)Unit hydrograph(d)Flow-duration curve(iv)Change in region of raingauge station (v)(b)(c)(d)The curve to surve(iv)Change in region of raingauge station (v)(1)(ii)(iii)(iv)(2)(v)(i)(iii)(3)(iii)(i)(iii)(4)(i)(iv)(ii)	126.		Set '	'A'				Set	'B'	ſ					
(b)S-curve(ii)Flood peak-area relation(c)Double mass curve(iii)Unit hydrograph(d)Flow-duration curve(iv)Change in region of raingauge station (v)(v)Stream flow versus timeThe correct sequence is:(a)(b)(c)(d)(1)(ii)(iii)(iv)(2)(v)(i)(iii)(3)(iii)(i)(iii)(4)(i)(iv)(ii)		(a)	Enve	elope	curve		(i)	Stre	am di	scharg	ge versus	percen	t time		
(c)Double mass curve(iii)Unit hydrograph(d)Flow-duration curve(iv)Change in region of raingauge station (v)(v)Stream flow versus timeThe correct sequence is:(a)(b)(c)(d)(1)(ii)(iii)(iv)(2)(v)(i)(iii)(3)(iii)(iv)(iii)(4)(i)(iv)(iii)		(b)	S-cu	rve			(ii)	Floc	od pea	ak-area	a relation	L			
(d)Flow-duration curve(iv)Change in region of raingauge station (v)(iv)Stream flow versus timeThe correct sequence is:(a)(b)(c)(1)(ii)(iii)(2)(v)(i)(3)(iii)(i)(4)(i)(iv)(iii)(iv)(iii)(iv)(iv)(iii)(iv)		(c)	Dou	ble ma	ass cu	rve	(iii)	Uni	t hydi	rograr	h				
(v) Stream flow versus time The correct sequence is: (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)		(d)	Flow	/-dura	tion o	urve	(iv)	Cha	nge ii	n regio	on of rair	ngauge	station		
The correct sequence is : (a) (b) (c) (d) (1) (ii) (iii) (iv) (v) (2) (v) (i) (iii) (iii) (3) (iii) (iv) (ii) (4) (i) (iv) (ii)							(v)	Stre	am flo	ow vei	rsus time	•			
(a)(b)(c)(d)(1)(ii)(iii)(iv)(v)(2)(v)(i)(ii)(iii)(3)(iii)(i)(iv)(iii)(4)(i)(iv)(ii)(v)		The	correc	t sequ	ience	is :									
(1) (ii) (iii) (iv) (v) (2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)			(a)	(b)	(c)	(d)									
(2) (v) (i) (ii) (iii) (3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)		(1)	(ii)	(iii)	(i v)	(v)									
(3) (iii) (i) (iv) (ii) (4) (i) (iv) (ii) (v)		(2)	(v)	(i)	(ii)	(iii)									
(4) (i) (iv) (ii) (v)		(3)	(iii)	(i)	(iv)	(ii)									
		(4)	(i)	(iv)	(ii)	(v)									

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

20

127. State the characteristic on which the nature of hydrograph is dependent :

- (1) Rainfall characteristics (2) Watershed characteristics
- (3) Both (1) and (2) (4) None of the above

128. Hydraulic radius is rate of :

- (1) rainfall : run-off
- (2) volume : area
- (3) cross sectional area : wetted perimeter
- (4) wetted perimeter : cross sectional area

129. Which amongst the following is the ratio of soil loss from land cropped under specified conditions to corresponding soil loss from continuous flow on identical soil, slope and rainfall condition ?

- (1) Land management factor (2) The slope length factor
- (3) Crop management factor (4) Conservation practice factor

130. Which of the following conservation measures is not advisable either technically or economically on the soils exceeding 20% slope?

- (1) Bench terraces (2) Stone terraces
- (3) Rock bolts (4) Contour trenching

131. The protection of downstream side of earth dam against water erosion is achieved through the use of ______.

- (1) rock pitching (2) concrete slab
- (3) berms (4)
- **132.** The delineation of priority area can be performed to some extent by :

(b) and (d)

152. The demication of phoney area can be performed to some extent

- (a) Reconnaissance survey
- (b) Study of topo-sheet
- (c) L-section of drainage line
- (d) Coding of watershed
- Answer options :
- (1) (a) and (c) (2)

(3) (a) and (b)

chimney drain

(c) and (d)

(4)

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

structure ? Hydrologic design (1)Hydraulic design (2)(3) Structural design (4)Stability design 134. What is the limit for watershed area to compute the direct run-off, from unit hydrograph method ? (1)5000 sq.km 8000 sq.km (2)(3) 10,000 sq.km (4)12,000 sq.km 135. What are derived for ungauged watersheds by computing various coefficients expressing physical features of the watershed ? Synthetic unit hydrograph S-curve (1)(2)Run-off hydrograph (3)S-hydrograph (4)**136.** The function of core wall in dam section is to : (1)control seepage and thus to check piping action (2)control cracking of dam section (3)increase vertical downward pressure (4)deflect the seepage line within base of dam vertical, which measure is effective amongst following? (3) Retaining wall (1)Spurs (2)Gabions (4)Culverts 138. What is the value of direct run-off from peak flow rate (Qp) 300 m³/s and base flow $25 \text{ m}^3/\text{s}$? $12 \text{ m}^3/\text{s}$ $275 \text{ m}^3/\text{s}$ $325 \text{ m}^3/\text{s}$ $7500 \text{ m}^3/\text{s}$ (1)(2)(3)(4) 139. The line on a map, joining places with equal evapotranspiration is referred as : Isopleths Isobar Isohyet (1)Isochrone (3)(4)(2)140. Bifurcation ratio of watershed is determined by using the formula : $Rb = Nu \times (Nu + 1)$ $Rb \approx Nu/(Nu+1)$ (1)(2) $Rb = (Nu)^{(k-u)}$ None of the above (3)(4)कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

A

21

133. Which design consists of determining the dimensions of different components of the

SO8

137. Where the stream takes to meandering and eroding the banks and where the cuts are

P.T.O.

22

141. While developing Unit Hydrograph for a particular catchment, its duration should :

	(1)	be equal to basin lag	(2)	not be more than $\frac{1}{5}$	to $\frac{1}{3}$ of basin lag
	(3)	be less than $\frac{1}{10}$ of basin	lag (4)	be 10 hours	
142.	Fror. stag	n contour plan of the site es by which of the followi	, the capacity ng rule/form	of the farm pond is cula?	calculated for different
	(1)	Chezy's fo rmula	(2)	Manning's formula	
	(3)	Simpson's rule	(4)	Kutter's formula	
143.	Hov spill	v much per cent space oc way ?	cupied by flo	oor blocks to width of	stilling basin of drop
	(1)	10 - 20 per cent	(2)	<mark>20</mark> - 30 per cent	
	(3)	30 - 40 per cent	(4)	50 - 60 per cent	
144.	Wha of 20	at is the length of contour) m ?	bund per he	ctare area of land hav	ing horizontal interval
	(1)	5000 m (2) 20	00 m	(3) 50 m	(4) 500 m
145.	Whi	ch type o <mark>f</mark> terrace is re <mark>qu</mark> it	red to <mark>fa</mark> cilita	te uniform impounding	g of water ?
	(1)	Strip terrace			
	(2)	Level bench terrace			
	(3)	Sloping outwardly benc	h terrace		
	(4)	Sloping inwardly bench	terrace		
146.	Circ	ulatory ratio of watershed	l is the ratio c		
	(1)	Number of streams to an	rea of watersl	ned	
	(2)	Axile width of basin to a	axile length of	basin	
	(3)	Area of watershed to are perimeter of watershed	a of circle wh /basin	ose radius is equivalent	to radius of equivalent
	(4)	Perimeter of basin to ci watershed	rcumference	of circle whose area is	s equivalent to area of

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

,

Α						23				SO8
147.	For oper	provi ation	ding a unif is done on	ormity water	v and fixi shed ?	ng the	identit	y to each and	l every w	atershed, which
	(1)	Deli	neation			(2)	Cod	ing		
	(3)	Reco	onnaissance	2		(4)	Area	al photograph	ıy	
148.	In n the 3	nediur 3 per (n rainfall zo cent soil slo	one, w pe ?	hat will b	e the v	ertical	interval betwo	een the co	ntour bunds for
	(1)	30 c	m	(2)	60 cm		(3)	90 cm	(4)	120 cm
149.	A fu gauş	ull reco ge :	eiving bottl	e indi	cates		rainfa	ll depth, at a	 time for S	ymon type rain
	(1)	1.25	cm	(2)	1.25 mr	n	(3)	1.05 m	(4)	1.20 cm
 150.	The	peak	discharge p	ortior	of hydro	graph	is knov	wn as :		
	(1)	Kisu	ng limb			(2)	Tip	6.1		
	(3)	Cres	st			(4)	Non	e of the above	6	
151.	If 'v' retai	' is the	e flow veloo e, considere	tity ar d in d	id 'R' is th lesign of	ne hydr waterw	aulic r ays is	adius, the sati :	isfacto r y i	ndex of channel
	(1)	vR		(2)	v ² /R		(3)	R/v^2	(4)	\mathbb{R}^2/v
 152.	On	which	theory/for	mula/	'law t <mark>he</mark> s	ettling	of susp	pended mater	ial in the	water is based ?
	(1)	Stric	ckler's form	ula		(2)	Shie	ld's formula		
	(3)	Blig	h's theory			(4)	Stok	e's law		
- <u>-</u> 153.	The met	follov hod fo	ving table sh or the respe	nows r ctive 1	ainfall rec	corded ((mm) a	nd area attribu	ated in Th	iessen's polygon
	Stat	ion	Rainfall		Area					
			(mm)		(Ha)					
	A1		15		30					
	A2		12		25					
	A3		20		32					
	Wha	at wil	l be the ave	rage r	ainfall (m	m) by 🕽	Thiesse	n's polygon r	nethod ?	
	(1)	15.6	57 mm	(2)	15.98 n	nm	(3)	29.00 mm	(4)	None of above
										<u> </u>
कच्च	या का	मासार्ठ	रे जागा /SPA	ACE F	OR ROUG	GH WC	RK			P.T.O.

SO8		24												
154.	Hov of r u	v many water unoff ?	rshed chara	acteristics	will be e	evalua	ated in cook's	s method fo	or determination					
	(1)	Two	(2)	Three		(3)	Four	(4)	Five					
155.	Dete 1.5 c	ermine total cm/h and du	loss of rai ration of s	nwater di torm to ca	ue to in ause effe	filtrat ective	tion from the rainfall is 8	e watershe h.	d, if Φ index is					
	(1)	6 cm	(2)	8 cm		(3)	12 cm	(4)	10 cm					
156.	Dete leng	ermine the va oth of drainag	alue of form ge basin :	n factor fo	or water	shed	having 50 sq	.km. area l	having 10,000 m					
	(1)	0.10	(2)	0.20		(3)	0.40	(4)	0.50					
157.	Whi area	ich method is of 4000 sq. l	most suit	able for co	omputin	g mea	an areal prec	ipitation fo	or the watershed					
	(1)	Arithmetic	mean		(2)	Isoh	iyetal							
	(3)	Theissen Po	olygon		(4)	Nor	ne of these							
158.	For one	mountaneou hydrometry	s regions c station fo	of tempera	ite, med	iterra a.	nean and tro	pical zone,	there should be					
	(1)	300 to 1000) km ²		(2)	1000	<mark>) to</mark> 5000 km	2						
	(3)	5000 to 200	000 km ²		(4)	2000	00 to 25000 l	km²						
159.	Fiel	d me <mark>asure</mark> me	ent of chan	inel flow a	as below	7 :		117						
	(a)	Average vo	elocity of f	low = 1.5	0 m/sec	:								
	(b)	Average cr	oss section	n = 1.20 m	n ² of cha	nnel	upto flow le	vel						
	Wha	at was run of	f rate ? W	hat woul	d be rur	n-off v	volume if flow	w time is c	ne minute ?					
	(1)	1.80 m ³ /se	ec and 108	m ³	(2)	1.08	m ³ /sec and	10.8 m ³						
	(3)	1.25 m ³ /se	ec and 75 1	m ³	(4)	0.80	m ³ /sec and	48 m ³						
160.	Wh clas	ich of the fo	ollowing	soil prof	ile char	acter	is not requ	ired for	land capability					
	(1)	Soil texture	2		(2)	Soil	depth .							
	(3)	Infiltration	rate of so	il	(4)	Ava	ailability of n	utrients						

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

.

SO8

•

					25					SC
161.	Whi over	ch type of spi topping due to	illway j unexpe	plays an cted inflo	import ws into	ant ro the fa	ole to protect arm pond ?	the	emb	ankment fro
	(1)	Mechanical	(2)	Chute		(3)	Pipe		(4)	Emergency
162.	Over as :	r a catchment a	rea of 1	km², volu	ime of v	water	due to 1 cm ra	infal	l wil	l be represente
	(1)	10 ³ litres			(2)	104	litres			
	(3)	10 ⁷ litres			(4)	Nor	e of the above	2		
163.	Wha	t is the rainfall	amoun	t in excess	s of φ -	index	is referred ?			
	(1)	Infiltration	(2)	W - inde	ex	(3)	Rainfall exce	ess	(4)	Percolation
164.	Purp	ose of undergr	ound da	ams is to :						
	(1)	to control sub	surface	soil mov	ement					
	(2)	to control dee	p perco	lation						
	(3)	to control sub	surface	e run-off a	nd wat	er ha	vesting			
	(4)	to enhance so	il infil tr	ation						
 165.	(4) Whie	to enhance so 	il infiltr - <u>-</u>	ation make run	-off wa	ter to	trickle rather t		to ru	ush out ?
 165.	(4) Whie (1)	to enhance so 	il infiltr used to y	ation make run	-off wa (2)	ter to Dro	trickle rather t p spillway	than	to ru	ish out ?
 165.	(4) Whie (1) (3)	to enhance so ch structure is t Chute spillwa Pipe spillway	il infiltr used to N	ation make run	-off wa (2) (4)	ter to Dro Gra	trickle rather t p spillway ded bund	 than	to ru	ish out ?
165. 166.	 (4) Whi (3) Whi cont 	to enhance so ch structure is n Chute spillwa Pipe spillway ch instrument inuously ?	il infiltr used to y is used	ation make run to record	-off wa (2) (4) 1 the he	ter to Dro Gra ead o	trickle rather to p spillway ded bund ver crest of ru	than	to ru ff me	ish out ? Pasuring devi
165. 166.	(4) Whia (1) (3) Whi cont (1)	to enhance so ch structure is r Chute spillwa Pipe spillway ch instrument inuously ? Self Recording	il infiltr used to by is used	ation make run to record	-off wa (2) (4) 1 the he (2)	ter to Dro Gra ead o Velo	trickle rather to p spillway ded bund ver crest of ru o <mark>ci</mark> ty meter	than 1n-0	to ru ff me	ish out ? easuring devi
165. 166.	 (4) Whit (1) (3) Whit (1) (3) 	to enhance so ch structure is r Chute spillwa Pipe spillway ch instrument inuously ? Self Recording Anemometer	il infiltr used to by is used g Raing	ation make run to record auge	-off wa (2) (4) 1 the ho (2) (4)	ter to Dro Gra ead o Velo Aut	trickle rather f p spillway ded bund ver crest of ru ocity meter omatic water s	than 1n-0 stage	to ru ff me e Lev	el Recorder
165. 166. 167.	 (4) Whit (3) Whit (1) (3) Dug 	to enhance so ch structure is r Chute spillwa Pipe spillway ch instrument inuously ? Self Recording Anemometer 'out farm pond	il infiltr used to y is used g Raing s are ge	ation make run to record auge merally :	-off wa (2) (4) 1 the ho (2) (4)	ter to Dro Gra ead o Velo Aut	trickle rather to p spillway ded bund ver crest of ru ocity meter omatic water s	un-o stage	to ru ff me e Lev	el Recorder
165. 166. 167.	 (4) Whit (1) (3) Whit (1) (3) Dug (1) 	to enhance so ch structure is r Chute spillway Pipe spillway ch instrument inuously ? Self Recording Anemometer 'out farm pond On stream po	il infiltr used to by is used g Raing s are ge onds	ation make run to record auge merally :	-off wa (2) (4) 1 the ho (2) (4) (2)	ter to Dro Gra ead o Velo Aut	trickle rather to p spillway ded bund ver crest of ru ocity meter omatic water s	than un-o stage	to ru ff me e Lev	el Recorder
165. 166. 167.	 (4) Whit (1) (3) Dug (1) (3) 	to enhance so ch structure is n Chute spillway Pipe spillway ch instrument inuously ? Self Recording Anemometer 'out farm pond On stream po Off stream po	il infiltr used to y is used g Raing s are ge onds onds	ation make run to record auge merally :	-off wa (2) (4) 1 the ho (2) (4) (2) (4)	ter to Dro Grav ead o Velo Aut Eml Sun	trickle rather to p spillway ded bund ver crest of ru ocity meter omatic water s pankment type ken ponds	than in-o stage	to ru ff me e Lev nds	el Recorder
165. 166. 167. 167.	(4) Whid (1) (3) Whi cont (1) (3) Dug (1) (3) Free safe	to enhance so ch structure is a Chute spillway Pipe spillway ch instrument inuously ? Self Recording Anemometer 'out farm pond On stream po Off stream po guard is provid	il infiltr used to y is used g Raing s are ge onds onds ded, abc	ation make run to record auge enerally :	-off wa (2) (4) 1 the ho (2) (4) (2) (4) (2) (4) pth of fl against	ter to Dro Gra ead o Velo Aut Eml Sun lowing	trickle rather to p spillway ded bund ver crest of ru ocity meter omatic water s pankment type ken ponds g water throug	than an-o stage e por	to ru ff me e Lev nds	el Recorder
165. 166. 167. 168.	 (4) Whit (1) (3) Whit contt (1) (3) Dug (1) (3) Free safe; (1) 	to enhance so ch structure is a Chute spillway Pipe spillway ch instrument inuously ? Self Recording Anemometer 'out farm pond On stream po Off stream po off stream po sboard is provid guard the earth Sliding	il infiltr used to y is used g Raing s are ge onds onds ded, abc	ation make run to record auge enerally :	-off wa (2) (4) 1 the ho (2) (4) (2) (4) (2) (4) pth of fl against (2)	ter to Dro Gra ead o Velo Aut Eml Sun lowing : Ove	trickle rather to p spillway ded bund ver crest of ru ocity meter omatic water s pankment type ken ponds g water throug erturning	than in-o stage e por	to ru ff me e Lev nds	el Recorder

.

•

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

•

P.T.O.

.

- **169.** Which term is used for failure in hydraulic structure takes place, in which there is removal of materials from the foundation by flow of seepage water ?
 - (1) Sliding (2) Compression (3) Crushing (4) Piping
- 170. The temporary structures are constructed where :
 - (a) Soil of the gulley is found unstable in nature
 - (b) Collection of sufficient amount of soil on their upstream portion is pre-requisite.
 - (c) The area is in remote
 - (d) Checking the gulley erosion until sufficient vegetation has been established. Answer options :
 - (1) Only (a) (2) (b) and (d) (3) Only (c) (4) (a) and (c)

171. Reynolds number is used to determine :

- (1) Hydraulic conductivity of soil
- (2) Seepage flow from earthen dam
- (3) Whether the flow is laminar or turbulent
- (4) Hydraulic resistance of flow
- 172. Using the criteria of best economical section, the bottom width of trapezoidal channel in black soil for flow depth of 0.30 m would be _____.

(Given, $\tan(45) = 1$., tan (60) = 1.73 tan (90	$0) = \infty, \tan\left(\frac{45}{2}\right) = 0.41$	
(1) 0.25 m	(2) 0.30 m	(3) 0.45 m	(4) 0.60 m

- 173. A higher operating pressure at the sprinkler nozzle yields :
 - (1) larger drops falling away from the sprinkler nozzle
 - (2) larger drops falling close to the sprinkler nozzle
 - (3) very fine drops falling close to the sprinkler nozzle
 - (4) very fine drops falling away from the sprinkler nozzle

 174. The width of a border usually varies from ______.

 (1) 3 to 15 m
 (2) 2 to 8 m
 (3) 4 to 20 m
 (4) 5 to 10 m

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

· A

- **SO8**
- 175. The recommended safe limits of land slope (longitudinal) for efficient irrigation in heavy (clay) soils range from :
 - (1) 0.05 to 0.20% (2) 0.20 to 0.40% (3) 0.25 to 0.65% (4) 0.65 to 0.85%

176. Cavitation is referred to as formation of :

- (1) cavities filled with soil due to local pressure drop
- (2) cavities filled with liquid vapour due to local pressure drop
- (3) release of entrapped air
- (4) none of above

177. Which component of canal system is supposed to be maintained by the farmer ?

(1)	Distributory	(2)	Water course	(3)	Minor	(4)	Branch canal
-----	--------------	-----	--------------	-----	-------	-----	--------------

178. The orifices are classified as :

(a)	circular orifice	(b)	trangular orifice
(c)	rectangular orifice	(d)	square orifice
Ans	wer options :		
(1)	only (a)	(2)	only (a) , (b) aлd (d)
(3)	only (a), (c)	(4)	all (a), (b), (c) and (d)

179. A precise method of computing the volume of earthwork in land levelling is :

	(1)	four point method	(2)	prisi	moidal method
	(3)	end area method	(4)	none	e of these
180.	The	centre of pressure for a plane vert	ical in	merse	ed surface lies at :
	(a)	the top of the immersed surface			
	(b)	the bottom of the immersed surf	ace		
	(c)	a depth of one-third the height of	of the i	mmer	rsed surface
	(d)	a depth of two-third the height of	of th e i	immei	rsed surface
	Ansv	wer options :			
	(1)	only (a) (2) only (a) a	nd (b)	(3)	only (c) (4) only (d)

181. What will be the value of centroid of rectangular field having 20 stake points and sum of elevation of all these points is 198.0 m.

(1) 09.90 m (2) 19.80 m (3) 00.99 m (4) 00.09 m

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

P.T.O.

182. In case of land grading with modern heavy earth moving equipment, the cut fill ratio should be :

(1)	zero	(2)	one
(3)	greater than one	(4)	less than one

183. Which of the term in general form of Hooghoudt's equation is the drainage criterion for steady state ground water conditions ?

(1)	$\frac{h}{q}$	(2)	$\frac{t}{\ln\left(1.16h_o/h_t\right)}$
(3)	KD	(4) ·	Kd μ

184. Ten meter vertical column of oil whose specific gravity is 1.23 will exert the pressure at bottom equivalent to :

- (1) 1.23 m of water column (2) 12.30 m o
- (3) 8.13 m of water column
- 2) 12.30 m of water column
- (4) None of above

185. In saline soils :

pH is less than 8.5 •(a) **(b)** ESP is less than 15 (c) ECe is more than 4 dS/m(d) ECe is less than $4 \, dS/m$ (e) pH is more than 8.5 **Answer options :** only (a), (b) and (d) only (b), (c) and (e) (1)(2)(3) only (a), (b) and (c) only (b), (d) and (e) (4)

- 186. The cut-back stream concept of furrow irrigation cannot be used in :
 - (1) graded furrows laid along the slope
 - (2) contour furrows laid on gently sloping grade
 - (3) level furrows on heavy soils
 - (4) corrugated furrows

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

Α					29				SO8	
187.	Whe hect	eat requires 60 ares/cumec is	cm of w :	ater durir	ng 120 đ	lays.	In this case	e an averag	ge outlet factor in	
	(1)	864	(2)	1728		(3)	432	_ (4)	None of above	
188.	Coe	fficient of stora	ge is the	property	of :					
	(a)	Confined aqu	aifer							
	(b)	Unconfined a	aquifer							
	(c)	Semi confine	d aquife	r						
	Ans	wer options :								
	(1)	all (a), (b) an	d (c)		(2)	only	y (b) and (c)			
	(3)	only (a) and	(c)		(4)	only	y (a) and (b))		
189.	On I	the basis of the	entry of	water int	o th <mark>e w</mark>	ell, tu	ıbe wells ar	e classified	l as :	
	(1)	Screen wells	and cavi	ty wells	(2)	Shal	llow wells a	nd deep v	vells	
	(3)	Drilled wells	and driv	ven wells	(4)	.Wat	ter table we	lls and arte	esian wells	
190.	Following criteria should be used while deciding horizontal distance between two adjacent wells.									
	(1) The wells should not be of same depth.									
	(2)	.) The pumping of one well should not affect the cone of depression of water table of adjacent well.								
	(3)	Both wells should yield same discharge.								
	(4)	(4) Water from one well can be released easily to other well during acute shortage period.								
191.	The	basic methods	of land	levelling d	lesign a	re :				
	(a)	Plane metho	d							
	(b)	Profile method								
	(c)	Plan inspection method								
	(d)	Contour adju	ustment	method						
	Ans	wer options :								
	(1)	only (a) and	(b)		(2)	only	y (c) and (d)		
	(3)	all of above ((a), (b), (c) and (d)	(4)	non	ne of the abo	ove		

•

,

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

.

P.T.O.

.

٠

192. If the hydraulic conductivity is same in all directions, the soil is said to be :

- anisotropic soil (2)heterogeneous soil (1)
- none of these (3)isotropic soil (4)

193. Leaching requirement means :

- supply of additional water with irrigation water (1)
- supply of additional fertilizers with irrigation water (2)
- (3)supply of additional amendments with irrigation water
- (4) supply of additional micro nutrients with irrigation water

194. The interrelationship between the depth of the subsurface drain and spacing between subsurface drain is characterised below.

- More the depth, more is the spacing (a)
- More the depth, less is the spacing (b)
- There is no influence of depth on spacing (c)

Answer options :

(1)	(a) only	(2)	(b) only	(3)	(c) only	(4)	(a) and (c) only
-----	----------	-----	----------	-----	----------	-----	------------------

195. In case of lift irrigation scheme, the term used when the pump house is located directly over the well.

- (a) jack well
- (b) sump well

Answer options :

(a) only (1)

(3)

(3)both (a) and (b) (b) only none of (a) and (b)

196. The following efficiency is the ratio between water stored in the root zone during irrigation and the water needed in the root zone prior to irrigation.

(2)

(4)

- (1)water application
- (2)
 - (4)water conveyance
- 197. Which one of the following amendments is not added in alkali soils to dissolve calcium carbonate for its reclaimation ?

(4)

(1)Gypsum

water distribution

- Single super phosphate (2)Sulphuric acid
- (3)Sulphur
- कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

water storage

198. The field drainage system may consist of :

(a)	open drains	(b)	mole drains
(c)	pipe drains	(d)	cross drains
Ans	wer options :		
(1)	only (a), (b) and (c)	(2)	only (a), (b) and (d)
(3)	only (b), (c) and (d)	(4)	only (a), (c) and (d)

199. When speed of pump is varied from n_1 to $n_{2'}$ the head H_1 will vary to :

(1)	$\mathbf{H}_2 = \mathbf{H}_1 \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right)^3 .$	(2)	$H_2 = H_1 \sqrt{n_1 n_2}$
(3)	$H_2 = H_1 \left(\frac{n_1}{n_2}\right)^2$	(4)	$H_2 = H_1 \left(\frac{n_2}{n_1}\right)^2$

200. Which of the following method is not a land levelling design method?

- (1) contour adjustment method (2) profile method
- (3) cut and fill method (4)

-000-

plan inspection method

कच्च्या कामासावी जागा /SPACE FOR ROUGH WORK

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः वरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रुश्न

Pick out the correct word to fill in the blank :

प्र. क्र. 201.	I congratulate you you (1) for (3) on	(2) at (4) about
	ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे उ प्रश्न क्र. 201 समोरील उत्तर-क्रमांक <mark>''(</mark> 3	भाहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल, यास्तव खालीलप्रमाणे)'' हे बर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
प्र. ज्ञ. 201.	 (1) (2) (4) अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्र उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमें फक्त काळ्या शाईचे बॉल्पेन वापरावे. 	त्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या रिलि संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता पेन्सिल वा शाईचे पेन वापरू नये.
<u> </u>	कच्च्या कामासाठी जागा /	SPACE FOR ROUGH WORK