	Adda 24	7	
प्रश्नपुस्तिका क्रमांक	2018		
BOOKLET No.	प्रश्नपुस्तिका - I	Y11 संचक्र.	
106457	पेपर क्र 1		
वेळ : 1 (एक) तास	कृषि विज्ञान	एकूण प्रश्न : एकूण गुण :	

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

परीक्षा-क्रमांक	
	∱ शेवटचा अंक

1

ि स क

सील

V

सूचनेविना

क्षिकांच्या

पर्ववे

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचविली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता <mark>वेणार नाही. नमूद केलेले उत्तर</mark> खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीव

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या शेवटच्या पानावर पहा

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

Adda 247

- 1. The low content of soil organic carbon in the Indian soils has been attributed to
 - a. Excessive tillage
 - b. Burning of crop residues
 - c. Prevalence of tropical, subtropical, arid and semiarid climatic conditions

Which of the above statement/s is/are correct?

- (1) Only a
- (2) Only b and c
- (3) Only c
- (4) All a, b and c

2. Soil formed in arid and semiarid regions or under restricted drainage usually have

- (1) Low concentrated soil solution
- (2) More concentrated soil solution
- (3) More diluted soil solution
- (4) Low salt content

3. In the following equation of Stokes Law, $V = \left[\frac{2}{9} \frac{r^2(\rho_s - \rho_f)}{n}g\right]$, η stands for

- (1) Equivalent special radius of falling particle
- (2) Terminal velocity of falling particles
- (3) Viscosity of suspending particles
- (4) Density of solid particles

4. The igneous rocks containing > 0 percent silica are known as

- (1) Acid rocks
- (2) Basic rocks
- (3) Sub-acid rocks
- (4) Sub-basic rocks

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

А

5. Match the following :	•
---------------------------------	---

a.	Quartz		I.	Medium weathering ability
b.	Muscovit	e	II.	Low weathering ability
c.	Hornblende		III.	Very low weathering ability
d.	Olivine		IV.	Very high weathering ability
	a	b	с	d
(1)	IV	III	II	I
(2)	III	II	I	IV .
(3)	II	IV	III	Ι
(4)	Ι	III	IV	п

6. Clay particles play a key role in aggregate formation due to

- a. Low surface area
- b. High surface area
- c. High surface charge
- d. Low surface charge

Which of the above statement/s is/are correct?

Answer Options :

- (1) Only a
- (3) Only b and d
- (2) Only a and b(4) Only b and c
- 7. Octahedral sheet in clay minerals dominated by magnesium is known as
 - (1) Dioctahedral (2) Trioctahedral
 - (3) Monooctahedral (4) Polyoctahedral
- 8. The moisture content of soil on an oven-dry basis, at which plants will wilt and fail to recover their turgidity is observed at
 - (1) 15 bar suction (2) 31 bar suction
 - (3) 5 to 10 bar suction (4) $\frac{1}{3}$ bar suction

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Y11

A

Y11

- **9.** Which of the following are typical characteristics of saline soils ?
 - (1) EC greater than 4 dSm^{-1} , ESP less than 15, pH less than 8.5
 - (2) EC greater than 4 dSm^{-1} , ESP greater than 15, pH variable usually above 8.5
 - (3) EC less than 4 dSm⁻¹, ESP more than 15, pH 6.0
 - (4) EC less than 4 dSm^{-1} , ESP greater than 15, pH 8.5 10.0
- 10. Excess of Zn, Mn, and Cu induces
 - (1) Mo deficiency in crops
 - (2) Fe deficiency in crops
 - (3) S deficiency in crops
 - (4) B deficiency in crops
- 11. Which of the following desirable characteristics an ideal green manure crop should possess?
 - a. It should be legume with nodular growth
 - b. It should have little water requirement for its own growth
 - c. It should have a shallow root system
 - d. It should contain large quantities of non-fibrous tissues of rapid decomposability

Answer Options :

- (1) Only a, b and c
- (3) Only a, c and d

- (2) Only a, b and d(4) Only b, c and d
- 12. The safe limit of Residual Sodium Carbonate (RSC) of irrigation water is
 - (1) 1.25 2.50 m.e./L (2) More than 2.50 m.e./L
 - (3) Less than 1.25 m.e./L (4) None of the above

13. Which of the following is the complex fertilizer ?

- (1) Diammonium phosphate (2) Urea
- (3) Sulphate of potash (4) Super phosphate

Y11

	(1)	Biofertilizers	(2)	Green manures				
	(3)	Biopesticides	(4)	Fertilizers				
15.	Cal	cium (Ca), Magnesium (Mg) and Sul	phur (S	S) are collectively termed as				
	(1)	Essential primary minerals	(2)	Secondary nutrients				
	(3)	Major nutrients	(4)	Micronutrients				
16.	The	The consumption of water containing high levels of nitrate -N can lead to						
	(1)							
	(2)	(2) Zinc chlorosis in infants						
	(3)	(3) Ethanol globinemia in infants						
	(4)	Methanoglobinemia in infants						
17.	Whe	Who has developed the 'Banglore method' of composting ?						
	(1)	Albert Howard	(2)	Shri N.D. Pandharipande				
	(3)	Dr. C.N. Acharya	(4)	None of the above				
18.				None of the above method of carbon estimation organic				
18.	As j	per the wet oxidation (Walkley and	Black) method of carbon estimation organic				
18.	As j mat	per the wet oxidation (Walkley and	Black) method of carbon estimation organic				
18.	As j mat	per the wet oxidation (Walkley and ter is calculated by mult <mark>iplying the</mark>	Black organi) method of carbon estimation organic				
18.	As j mat 1·72	per the wet oxidation (Walkley and ter is calculated by multiplying the 24 on the assumption that	Black organi arbon) method of carbon estimation organic				
18.	As j mat 1·72 (1)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c	Black organi arbon arbon					
18.	As j mat 1·72 (1) (2)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c	Black organi arbon arbon arbon) method of carbon estimation organic				
18.	As p mat 1·72 (1) (2) (3) (4)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 56% c	Black organi arbon arbon arbon arbon) method of carbon estimation organic				
	As p mat 1·72 (1) (2) (3) (4)	per the wet oxidation (Walkley and ter is calculated by multiplying the 24 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 54% c	Black organi arbon arbon arbon arbon) method of carbon estimation organic				
	As j mat 1·72 (1) (2) (3) (4) Whi	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c	Black organi arbon arbon arbon arbon) method of carbon estimation organic ic carbon values by a conversion factor				
	As 1 mat 1.72 (1) (2) (3) (4) Whi (1) (3)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c Soil organic matter contains 52% c	Black organi arbon arbon arbon ? (2) (4)) method of carbon estimation organic ic carbon values by a conversion factor				
19.	As 1 mat 1.72 (1) (2) (3) (4) Whi (1) (3)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c Soil organic matter contains 52% c character type of soil fixes more phosphate Calcareous soils Alkaline soils	Black organi arbon arbon arbon (2) (4) are) method of carbon estimation organic ic carbon values by a conversion factor Neutral soils Acidic soils				
19.	As p mat 1.72 (1) (2) (3) (4) Whi (1) (3) The	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c Soil organic matter contains 52% c calcareous soils Alkaline soils	Black organi arbon arbon arbon (2) (4) are) method of carbon estimation organic ic carbon values by a conversion factor Neutral soils Acidic soils				
19.	As p mat 1·72 (1) (2) (3) (4) Whi (1) (3) The (1)	per the wet oxidation (Walkley and ter is calculated by multiplying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c Soil organic matter contains 52% c ch type of soil fixes more phosphate Calcareous soils Alkaline soils source of negative charge on humus Hydroxy (– OH) and Carboxylic (–	Black organi arbon arbon arbon (2) (4) are) method of carbon estimation organic ic carbon values by a conversion factor Neutral soils Acidic soils				

А

Y11

- **21.** A seed drill performs the function as
 - (1) to carry the seeds
 - (2) to open furrow to an uniform depth
 - (3) to meter the seeds
 - (4) All of the above
- 22. Rank the following animals in ascending order of their draft load capacity (% body weight):
 - a. Bullock
 - b. Camel
 - c. Buffalo
 - d. Donkey

Answer Options:

(1)	a, b, c, d	(2)	d, a, c, b
(3)	a, c, b, d	(4)	c, d, a, b

23. It is the power generated in the engine cylinder and received by the piston.

(1) BH	Р	(2)	DBHP
(3) IHI	þ	(4)	Belt Power

24. For tractor costing ₹ 2,50,000 having life of 10 years and working hours per year as 1000, what is depreciation per hour?

- $(1) \quad 22.0$
- $(2) \quad 22.5$
- (3) 25.0
- (4) 24.0

25. It is a machine to apply chemical in dust form is known as

- (1) Flame gun
- (2) Fumigator
- (3) Duster
- (4) None of the above

26.	For	mounted implements the stress in and as draft increases this for		in top link of a three-point hitch is $$.
	(1)	tensile, decreases	(2)	compressive, decreases
	(3)	tensile, increases	(4)	compressive, increases
27.	The	basic component/s of a sprayer is/arc	e	
	(1)	Nozzle body	(2)	Swirl plate
	(3)	Spray lance	(4)	All of the above

- **28.** Arrange the following crops in descending order of peripheral speed of the spike tooth type threshing drum :
 - a. Wheat
 - b. Sorghum
 - c. Maize
 - d. Rice

Answer Options:

(1)	a, b, c, d	(2)	c, b, a, d
(3)	a, d, b, c	(4)	c, a, b, d

29. If the concave clearance is not adjusted then the following defect/s may be observed :

- (1) Broken grains
- (2) Unthreshed material
- (3) Bhusa
- (4) (1) and (2) above

30. If a farmer wants to erradicate weeds by spraying weedicide, then he should use ______ type of nozzle.

- (1) Flat fan (2) Hollow cone
- (3) Solid cone (4) Flooding

31. Soybean is mostly used in India for the production of

(1) Edible oil

Α

- (2) Pulses
- (3) Milk substitutes
- (4) Processed food

32. Respiration in plants, animals and fungi involves

- a. The disappearance of food substance within the cells.
- b. The liberation of heat energy.
- c. The absorption of oxygen.
- d. Excretion of CO₂.

Answer Options :

- (1) Only a
- (3) Only b, c and d

- (2) Only a and b
- (4) All a, b, c and d

33. For multiple effect evaporater when two evaporators are used in series then

- (1) $q_1 > q_2$ (2) $q_1 < q_2$
 - (3) $q_1 = q_2$ (4) None of the above

34. Size reduction of grains is caused by impact in

- (1) Attrition mill (2) Roller mill
- (3) Hammer mill (4) Jaw crusher
- **35.** During _______ evaporation takes place at the surface of material and the water on the surface behaves in a manner similar to an open area of water.
 - (1) First falling rate drying period
 - (2) Second falling rate drying period
 - (3) Constant rate drying period
 - (4) All of the above

38.

36. Capacity of morai type grain storage structure varies from ______ tonnes.

- (1) 3.5 to 18
- (2) 5 to 15
- (3) 10 to 15
- (4) 20 to 25

37. In freeze drying the water vapour is removed by

- (1) Melting
- (2) Evaporation
- (3) Condensation
- (4) Sublimation

_________ separates the material on the basis of relative length difference.

- (1) Specific gravity separator
- (2) Air screen cleanness
- (3) Spiral separator
- (4) Indented cylinder separator

39. The indented cylinder separator separates the materials on the basis of

- (1) Relative width
- (2) Relative thickness
- (3) Relative length
- (4) Relative density

40. At 100% relative humidity, wet bulb temperature of air is

- (1) More than dew point temperature
- (2) Less than dew point temperature
- (3) Same as dew point temperature
- (4) None of the above

41.	The construction of drop only.	structure is usually limited upto the dr	op height of
	(1) 1 to 2 m	(2) 2 to 3 m	
	(3) 3 to 4 m	(4) 4 to 5 m	

.

(2)0.5 mm/h(1) 1 mm/h(3) 1 cm/h(4) 0.1 mm/h

In estimating peak rate of runoff which of the following form is correct? 43.

- Q = Peak rate of runoff, m³/sec
- C = Coefficient of runoff, unitless
- I = Intensity of rainfall, cm/hr

A = Area, hectares

~- .

(1)
$$Q = \frac{CIA}{36}$$

(2)
$$Q = \frac{CIA}{360}$$

$$(3) \quad \mathbf{Q} = \frac{\mathbf{CLA}}{\mathbf{3.60}}$$

Q = 0.0195 CIA(4)

44. surveys include photographic surveys of large areas in a relatively short time for the purpose of project planning.

- (1)Route (2)Aerial
- Agricultural (3)Cadastral (4)

45. In extreme cases of heavy or light textured soils and deep or shallow excavations, the out-fill ratio may be as low as _____ and as high as _

0.2, 0.8 (2)1.1, 2.0 (1)

(3)	1·5, 2·2	(4)	2·3, 3·1
-----	----------	-----	----------

Y11			12	4	۱.
46.	Azir	nuth angle cannot exceed			
	(1)	90 °	(2)	180°	
	(3)	270°	(4)	360°	

- 47. Which type of graded bund is used when length of bund and discharge are more ?
 - (1)Variable graded bund
 - (2)Uniform graded bund
 - Solid bund (3)
 - (4)Contour bund
- **48.** Surveys for laying out plots and constructing streets, water supply system and sewers is known as
 - (1)Cadastral survey
 - (2)Engineering survey
 - (3) City survey
 - (4) Topographical survey
- 49. The preparation of keeping the table at each of the successive stations parallel to the position which it occupied at the first station is known as
 - (1)Levelling
 - (2)Centering
 - (3) Setting
 - (4) Orientation

50. The terracing practice is adopted for soil and water conservation in that area, where land slope is greater than _____ percent.

- (1)05 10 (2)
- (3) 20(4) 30

- a. Sand filter is used to remove organic and inorganic material.
- b. Hydrocyclone filter is used to remove high density particle.
- c. Disc filters are used to remove organic material and algae.
- d. Screen filter is used to remove high density particle.

Answer Options :

- (1) Only a, b and c (2) Only b, c and d
- (3) Only a, c and d (4) Only a, b and d
- **52.** It is the downward vertical movement of water through soil mainly due to gravitational force.
 - (1) Laminar flow (2) Seepage
 - (3) Percolation (4) Stream flow
- 53. Which drainage layout system consists of parallel laterals that enter the main at an angle usually from both the sides ?
 - (1) Herringbone
 - (3) Gridiron

- (2) Interceptor
- (4) Random

54. Emitter selection should be such that it should wet at least ______ potential horizontal cross-section of root system.

- a. One-fifth and upto one-fourth
- b. One-third and upto one-half
- c. One-fourth and upto one-third
- d. One-fifth and upto one-half

Answer Options :

- (1) Only a and c (2) Only b
- (3) Only c (4) Only c and d
- 55. What will ETc be for following case ?
 a. Pan evaporation (PE) = 20 mm/day
 b. Pan factor = 0.7
 - c. Crop coefficient (kc) = 1.00

Answer Options :

(1) 1.4 mm (2) 140 mm (3) 14 mm (4) 14 cm

- 56. The harmful ingredients in brick earth are
 - (1) Iron pyrites
 - (2) Alkalies
 - (3) Pebbles
 - (4) All of the above
- 57. In the arrangement of the farmshed, residential buildings should be located away from cattle shed and other buildings to ensure
 - (1) Privacy
 - (2) Reduction of nuisance of flies and smell coming from the dairy barn
 - (3) Both (1) and (2)
 - (4) None of the above
- **58.** Which of the following is/are **not** special mortar(s)?
 - (1) Fire-resistant mortar
 - (2) Packing mortar
 - (3) Sound-absorbing mortar
 - (4) All above are special mortars

59. The concrete yield obtained from one 50 kg cement bag for a concrete mix of proportion (1:2:4) will be

- (1) 1.63 m^3
- (3) 0.163 m^3

(4) 163 m^3

 16.3 m^3

_

(2)

- **60.** If 90% light is passing through one layer of UV-inhibited polythene, then amount of light passing through two layers of the same polythene in polyhouse will be
 - $(1) \quad 0.81\%$
 - $(2) \quad 0.91\%$
 - $(3) \quad 0.61\%$
 - $(4) \quad 0.71\%$

A					1:	5		Y11			
61.	Whi	ch of the f	ollowing	g is the pr	ogeny of	breede	rs seed ?				
	(1)	Nucleus	seed			(2)	Breeder seed				
	(3)	Foundati	ion seed	l	_ <u>_</u>	· (4)	Certified seed				
62.	Disa	advantage	s of min	imum till:	age are						
	a. Lower seed germination										
	b.	More N i	nas to b	e added							
	c.	Sowing o	peratio	ns are difi	ficult						
	d.	Continuo	ous use	of herbicio	les						
	Answer Options :										
	(1)	Only a a	nd b			(2)	Only a, b and c				
	(3)	All of the	e above			(4)	Only b and d				
63.	Potato and elephant yam are classified as										
	(1)	Fibre cro	ops			(2)	Forage crops				
	(3)	Spice cro	ps			(4)	Tuber crops				
64.	Mat	ch the foll	owing :								
		Crops				Assoc	iated Weeds				
	a.	Sorghum			I.	Oroba	nche indica				
	b.	Rice			II.	Phala	ris minor				
	c.	Wheat			III.	Striga	lutea				
	d.	Tobacco			IV.	Echin	ochloa colonum				
		a	b	с	d						
	(1)	Ι	II	III	IV						
	(2)	III	IV	II	Ι						
	(3)	IV	III	Ι	II						
	(4)	II	IV	III	I						

.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

Y11		Α								
65.	soils are ideal for most crops because of adequate nutrient and wate									
	ava	ilability	and well	drained con	ditions.					
	(1)	Clayey				(2)	Sandy			
	(3)	Heavy				(4)	Loamy			
66.	The term is used to describe the resistance of a soil at diff									
	soil	-moistur	e content	s to mechan	ical stres	s or	manipulations.			
	(1)	Soil co	nsistency	,		(2)	Soil workability			
	(3)	Friabil	ity index			(4)	Soil tilth			
67.		ı <i>tana Co</i> hod by u		Lantana wee	ed) can b	e ef	fectively controlled through biocontrol			
	(1)	Microle	arinus ly	priformis		(2)	Neochetina eichhorniae			
	(3)	Teleon	emia scru	ıpulosa		(4)	Agasicles hygrophila			
68.	Win	n d v elocit	ty is gene	erally measu	red by					
	(1)	Barom	eter			(2)	Anemometer			
	(3)	Altime	ter			(4)	Cyclometer			
69.	Mat	ch the fo	ollowing :	:						
			Α				в			
		Weath	er Elem	ents		U	nits			
	a.	Vapou	r pressur	e	I.	М	illibars/mm of Hg/Pascals			
	b.	Bright	sunshine	e duration	II.	m	m of Hg			
	c.	Cloud	cover		III.	H	rs.			
	d.	Atmos	pheric pr	essure	IV.	0	kta (0 to 8)			
		a	b	С	d					
	(1)	IV	III	II	Ι					
	$\langle \mathbf{O} \rangle$	II	III	IV	I					
	(2)									
	(2) (3)	I	II	III	IV					

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Ð

			17	
70.	Sho	rt-range weather forecast is	s valid for	
	(1)	4 – 10 days	(2)	3 days
	(3)	12 – 15 days	(4)	20 – 25 days
71.		ed on vertical temperature or layers or strata among t		nosphere is notionally divided into fo pper most layer is
	(1)	Stratosphere	(2)	Mesosphere
	(3)	Thermosphere	(4)	Troposphere
72.		are the lines	with uniform v	alues of a given scalar quantities.
	(1)	Isopleths	(2)	Isohyets
	(3)	Isobars	(4)	Isonephs
73.	-		7	
73.	wes (1)	oolar highs at North and terlies at high latitudes. Trade winds	South poles to (2)	·
	wes (1) (3)	oolar highs at North and terlies at high latitudes. Trade winds Polar esterlies	South poles to (2)	wards low pressure areas within Westerly winds
73. 74.	wes (1) (3)	oolar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if	South poles to (2) (4)	wards low pressure areas within Westerly winds
	wes (1) (3) A so (1)	oolar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if EC _e > 4 dS/m, ESP < 15%	South poles to (2) (4) and pH < 8.5	wards low pressure areas within Westerly winds
	wes (1) (3) A so (1) (2)	polar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if $EC_e > 4 dS/m$, $ESP < 15\%$ $EC_e < 4 dS/m$, $ESP > 15\%$	South poles to (2) (4) and pH < 8.5 and pH > 8.5	wards low pressure areas within Westerly winds
	wes (1) (3) A so (1)	oolar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if EC _e > 4 dS/m, ESP < 15%	South poles to (2) (4) and pH < 8.5 and pH > 8.5 and pH = 8.5	wards low pressure areas within Westerly winds
	wess (1) (3) A so (1) (2) (3) (4) A v	polar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if $EC_e > 4 dS/m$, $ESP < 15\%$ $EC_e < 4 dS/m$, $ESP > 15\%$ $EC_e < 4 dS/m$, $ESP > 15\%$	South poles to (2) (4) and pH < 8.5 and pH > 8.5 and pH = 8.5 and pH > 8.5	wards low pressure areas within Westerly winds
74.	wess (1) (3) A so (1) (2) (3) (4) A v	polar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if $EC_e > 4 \text{ dS/m}, ESP < 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$	South poles to (2) (4) and pH < 8.5 and pH > 8.5 and pH = 8.5 and pH > 8.5	wards low pressure areas within Westerly winds Breeze
74.	wes (1) (3) A so (1) (2) (3) (4) A vo hect	bolar highs at North and terlies at high latitudes. Trade winds Polar esterlies bil is saline, if $EC_e > 4 \text{ dS/m}, ESP < 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$ $EC_e = 15\%$ $EC_e = 15\%$ $EC_e = 15\%$ $EC_e = 15\%$ $EC_e = 15\%$	South poles to (2) (4) and pH < 8.5 and pH > 8.5 and pH = 8.5 and pH > 8.5	wards low pressure areas within Westerly winds Breeze
74.	wes (1) (3) A so (1) (2) (3) (4) A vo hect (1)	polar highs at North and terlies at high latitudes. Trade winds Polar esterlies oil is saline, if $EC_e > 4 \text{ dS/m}, ESP < 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e < 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$ $EC_e > 4 \text{ dS/m}, ESP > 15\%$	South poles to (2) (4) and pH < 8.5 and pH > 8.5 and pH = 8.5 and pH > 8.5	wards low pressure areas within Westerly winds Breeze

76. The downward entry of water from the air medium into the soil is termed as

- (1) Adsorption
- (2)Absorption
- (3)Infiltration
- Gravitation (4)
- 77. Respiration decreases with
 - Mild stress (1)
 - (2)Decrease in moisture stress
 - Increase in moisture stress (3)
 - (4) None of the above

78. Match the following :

	Type of	soil		Available moisture mm m ⁻¹
a.	Clay loar	n		I. 60
b.	Silt loam	L		II. 150
c.	Clay			III. 100
d.	Loamy sa	and		IV. 200
	a	b	c	d
(1)	п	III	IV	
(2)	I	п	III	IV
(3)	II	IV	Ι	III
(4)	IV	III	II	I

Water is released at the rate of 8 cumec at the head of sluice. Duty at field is 79. 120 ha cumec⁻¹ and transit loss is 20 percent. How much area can be irrigated with released water?

(1)	568 ha	(2)	868 ha
(3)	1068 ha	(4)	768 ha

(3)	1068 ha	(4)	768 ha

कच्च्या कामासात	ी जागा	/ SPACE F	OR ROUGH	WORK

Α			19		Y11					
80.	water is available for plant growth.									
	(1)	Gravitational water								
	(2)	Capillary water								
	(3)	Hygroscopic water								
	(4)	Atmospheric water	_							
81.	Firs	st sorghum hybrid CSH -	- 1 was released	l in						
	(1)	1961	(:	2)	1962					
	(3)	1963	(4	4)	1964					
82.	Ster	rility mosaic (sm) disease	of pigeonpea is	s tra	ansmitted by the vector					
	(1)	Pod borer	(5	2)	Moth fly					
	(3)	Pod fly	(4	4) 	Mite					
83.	Acc				Mite erally cultivated species of cotton in					
83.	Acc	ording to Hutchinson's								
83.	Acco	ording to Hutchinson's ia are								
83.	Acco Indi a.	ording to Hutchinson's ia are Gossypium arboreum								
83.	Acco Indi a. b.	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum	classification g							
83.	Acco Indi a. b. c. d.	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum	classification g							
83.	Acco Indi a. b. c. d.	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense	classification g							
83.	Acco Indi a. b. c. d. Ans	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense	classification g							
83.	Acco Indi a. b. c. d. Ans (1)	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense swer Options : Only a and b	classification g							
83.	Acce Indi a. b. c. d. Ans (1) (2)	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense swer Options : Only a and b Only b and c	classification g							
83.	Acce Indi a. b. c. d. Ans (1) (2) (3) (4)	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense swer Options : Only a and b Only b and c Only c and d All a, b, c and d	classification g	gend						
	Acce Indi a. b. c. d. Ans (1) (2) (3) (4)	ording to Hutchinson's ia are Gossypium arboreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense swer Options : Only a and b Only b and c Only c and d All a, b, c and d	classification g	gend	erally cultivated species of cotton in					

·····

Y11		20		A						
85.	SRI	is one of the methods of cultivation of	f							
	(1)	Bt. cotton	(2)	Sugarcane						
	(3)	Sugarbeet	(4)	Rice						
	In I	ndia, the maximum area of wheat is	under	the species						
	(1)	Triticum aestivum								
	(2)	Triticum durum								
	(3)	Triticum dicoccum								
	(4)	Triticum sphaerococcum								
87.	The	fodder crop Lucerne contains about		percent crude protein.						
	(1)	6 - 7	(2)	10 - 12						
	(3)	15 – 20	(4)	25 - 30						
38.	The seed rate of wheat under normal condition iskg/ha.									
	(1)	100 - 125	(2)	5 <mark>0</mark> – 60						
	(3)	200 - 250	(4)	180 – 200						
89.	kn0	e floating of fine dust particles small own as Dispersion Saltation Suspension Surface creep	er tha	n 0.1 mm diameter through the air is						
90.	Kol	hapur is headquarters of	Agro	Climatic Zone of Maharashtra.						
	(1) Central Maharashtra Plain Zone									
	(1)	Central Maharashtra Plain Zone								
	(1) (2)	Central Maharashtra Plain Zone Western Ghat Zone								
	• •									

- 91. The resistance to metabolic strain and plastic strain can increase the plant ability to resist and survive under moisture stress is referred as
 - (1) Restricting transpiration stress
 - (2) Accelerating water uptake stress
 - (3) Mitigating the stress
 - (4) Tolerating the stress
- 92. Keeping stubbles in trenches protruding above the ground level enhances the available soil moisture. It is known as
 - (1) Crop residue mulch
 - (2) Parallel mulch
 - (3) Stubble mulch
 - (4) Vertical mulch
- **93.** Which type of bench terraces are most effective for high rainfall areas ?
 - (1) Inward sloping bench terraces
 - (2) Outward sloping bench terraces
 - (3) Levelled or table top bench terraces
 - (4) California type of terraces
- 94. The process of runoff collection during periods of peak rainfall in storage tanks, ponds, etc. is usually referred to as
 - (1) Collection of rainfall
 - (2) Use of rainfall water
 - (3) Water harvesting
 - (4) Water disposal

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Α

- **95.** In rainfed farming systems the principles of relevant components of environmentally suistainable farming system should include
 - a. Reducing soil erosion and improving soil conservation.
 - b. Inclusion of legumes and cover crops in crop rotations.
 - c. Agroforestry as an alternate land use system.
 - d. Judicious use of organic wastes.

Answer Options :

- (1) Only a and b (2) Only b and c
- (3) Only c and d (4) All a, b, c and d
- **96.** Which of the following is a resource management strategy to active economic and sustained agricultural production to meet the requirements of farm livelihood while preserving resource base and maintaining environmental quality ?
 - (1) Cropping system
 - (2) Eco-farming
 - (3) Farming system
 - (4) Sustainable agriculture
- 97. The continued maintenance of plant population within its ecosystem to which it is adapted is referred as ______ plant genetic resources conservation.
 - a. In-situ conservation
 - b. Ex-situ conservation
 - c. Species diversity conservation
 - d. Resource conservation

Answer Options :

(1) Only a

- (2) Only b and c
- (3) Only c and d (4) Only b and d

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

Y11

- **98.** _____ describes the processes of on-farm innovations adopted by farmers towards achieving the goals of sustainable agriculture.
 - (1) Alternate agriculture
 - (2) Agriculture
 - (3) Agronomy
 - (4) Conventional agriculture
- **99.** Which of the following is/are the broad major components of sustainable agriculture?
 - a. Sustainable utilization of land, water resources and biodiversity
 - b. Integrated nutrient management
 - c. Integrated plant protection
 - d. Enhancing sustainability of dry land and irrigated agriculture

Answer Options :

(1)	Only c		(2)	Only a

(3) Only a and d (4) All of the above

100. Which of the following are the agronomic measures of soil conservation ?

- a. Contour cultivation
- b. Strip cropping
- c. Bench terraces
- d. Application of organic manures

Answer Options :

- (1) Only a, b and c
- (2) Only a, b and d
- (3) Only b, c and d
- (4) All of the above

सूचना — (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रूपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank :

for

Q.No. 201. I congratulate you _____ your grand success.

(4)

- (2) at
- (3) on (4) about ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''(3)'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.
- प्र.क्र. 201. (1) (2) 🗨

(1)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

