100095		er	mbe	Nu	eket	Tic	Iall
100.120	Q.B. No.						
	(y.b. No.					_	

Booklet Code :

Marks : 100

DL-323-STAT

Time: 120 Minutes

Paper-II

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE (Read the Instructions carefully before Answering)

 Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.

2. The candidate should ensure that the Booklet Code printed on OMR Answer

Sheet and Booklet Code supplied are same.

3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page. (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.

4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log

Tables are not permitted into the examination hall.

 There will be 1/4 negative mark for every wrong answer. However, if the response to the question is left blank without answering, there will be no penalty

of negative mark for that question.

6. Record your answer on the OMR answer sheet by using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) corresponding to the concerned question number in the OMR answer sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.

Change of an answer is NOT allowed.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

1.	Let	X and Y be two independ	dent events wit	P(X) = 0.3 and P(Y) = 0.4, then
	prob	bability that 'Y' occurs bu	ıt 'X' does not	is:
	(1)	0.12	(2)	0.18
	(3)	0.28	(4)	0.75
2.	A p	roblem is given to three st	udents whose p	robabilities of solving independently
	are	1/2, 1/3 and 1/4 respective	ly. What is the	probability that none of them solves
	the	problem ?		
	(1)	3/10	(2)	5/7
	(3)	2/7	(4)	7/10
3.	The	set of discontinuity poin	ts of a distrib	ution function is :
	(1)	atmost countable	(2)	countable
	(3)	infinite	(4)	finite
4.	The	distribution of the heigh	ts of female co	ollege students approximated by a
	Nort	nal Curve with a mean	of 65 inches ar	nd a s.d. equal to 3 inches. What
	prop	ortion of college female :	students are b	etween 65 and 67 inches tall ?
	(1)	0.75	(2)	0.5
	(3)	0.25	(4)	0.17
5.	A me	edical treatment has a s	uccess rate of	8 out of 10. Two patients will be
	treat	ed with this treatment. A	assuming the re	esults are independent for the two
	patie	ents, what is the probabil	ity that neithe	r one of them will be successfully
	cure	d ?		
	(1)	0.04	(2)	0.5
	(3)	0.36	(4)	0.32
DL-3	23-STA	AT—A	2	

6.	Whic	h of the following relatio	ns among Conv	ergence of a sequence of random		
	varia	bles does not hold good	?			
	(1)	Convergence in rth me	an implies con	vergence in sth mean for $r > s$		
	(2)	Convergence in probabi	lity implies co	nvergence in mean.		
	(3)	Almost sure convergence	ce implies conv	ergence in probability.		
	(4)	Convergence in probab	ility implies co	nvergence in distribution.		
7.	The	condition $V(T_n) \to 0$ as n	→ ∞ for an unbi	ased estimator T_n to be a consistent		
		nator is :				
	(1)	Sufficient only				
	(2)	Necessary and sufficien	nt			
	(3)	Neither necessary nor	sufficient			
	(4)	Necessary only				
8.	If X	X ₂ X _n is a random sam	ple of size 'n'	drawn from a $N(\mu, \sigma^2)$. Population		
8.		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (xi - \overline{x})^{2}, \text{ th}$				
	(3)	$ \frac{1}{n}\sigma^4 $ $ \frac{2}{(n-1)}\sigma^4 $	(2) (4)	$\frac{1}{(n-1)}\sigma^2$		
9.				s classical central limit theorem ?		
		Lindberg-Feller		Lindberg-Levy		
	(3)	Liapunov	(4)	Demoivre-Laplace		
10.		Let $\{x_n\}$ be a sequence of <i>i.i.d</i> random variables and for $n \ge 1$, let $S_n = \sum_{K=1}^n X_k$				
	The	Then $\frac{S_n}{x} \xrightarrow{a.s.} \mu$ if and only if $ E(x) < \alpha$, where $\mu = E(x)$. Then by which				
	nan	ne this law of large num	bers is known	as :		
	(1)	Bernoulli's	(2)	Chebychev's		
	(3)	Khintchine's	(4)	Kolmogorov's		
DL-	323-ST	TAT—A	3	P.T.O		

Let	$\mathbf{X}_1 \ \mathbf{X}_2 \ \dots \ \mathbf{X}_n$ be a random samp	le from	a distribution with $c.d.f$ F(.). For		
a fix	$\mathbf{x}\mathbf{c}\mathbf{d}$ t , the estimator \mathbf{T}_n for $\mathbf{F}(t)$	defined	by $T_n = \frac{1}{n}$ (Number of $X_i \le t$) is		
(1)	Consistent but not unbiased	(2)	Unbiased but not consistent		
(3)	Unbiased and consistent	(4)	Neither consistent nor unbiased		
If $\hat{\theta}_1$ is a most efficient estimator and $\hat{\theta}_2$ is any other estimator with efficiency					
e, th	nen the correlation coefficient be	tween	$\hat{\theta}_1$ and $\hat{\theta}_2$ is :		
(1)	e^2	(2)	e^{-2}		
(3)	$e^{-1/2}$	(4)	$e^{\frac{1}{2}}$		
An a	aperiodic Markov chain with sta	tionary	transition probability on the state		
space {1, 2, 3, 4, 5} must have :					
(1)	At least one positive recurrer	nt state	•		
(2)	At least one transient state				
(3)	At least one null recurrent st	tate			
(4)	At least one positive recurren	it and	at least one null recurrent state		
A right skewed continuous distribution used to determine the sampling distribution					
of th	ne sample variance is the :				
(1)	Normal distribution	(2)	Chi-square distribution		
(3)	Binomial distribution	(4)	Uniform distribution		
If Y	$= 5X + 10$ and $X \sim N$ (12, 25),	then 1	mean of Y is:		
(1)	50	(2)	60		
(3)	70	(4)	135		
23-STA	AT—A 4				
	a fit (1) (3) If ê e, th (1) (3) An : space (1) (2) (3) (4) A rig of th (1) (3) If Y (1) (3)	a fixed t , the estimator T_n for $F(t)$ of (1). Consistent but not unbiased (3). Unbiased and consistent. If $\hat{\theta}_1$ is a most efficient estimator and e , then the correlation coefficient becomes (1) e^2 . (3) $e^{-3/2}$. An aperiodic Markov chain with states space {1, 2, 3, 4, 5} must have: (1) At least one positive recurrent (2) At least one transient state. (3) At least one null recurrent state. (4) At least one positive recurrent A right skewed continuous distribution of the sample variance is the: (1) Normal distribution. (3) Binomial distribution. If $Y = 5X + 10$ and $X = X + $	(3) Unbiased and consistent (4) If $\hat{\theta}_1$ is a most efficient estimator and $\hat{\theta}_2$ is e , then the correlation coefficient between (1) e^2 (2) (3) $e^{-1/2}$ (4) An aperiodic Markov chain with stationary space $\{1, 2, 3, 4, 5\}$ must have : (1) At least one positive recurrent state (2) At least one transient state (3) At least one null recurrent state (4) At least one positive recurrent and A right skewed continuous distribution used to of the sample variance is the : (1) Normal distribution (2) (3) Binomial distribution (4) If $Y = 5X + 10$ and $X \sim N$ (12, 25), then (1) 50 (2) (3) 70 (4)		

16.	Whic	Which of the following is not an example of a discrete probability distribution?				
	(1)	The number of bedrooms	in a house			
	(2)	The number of bathroom	s in a house	2		
	(3)	The sale or purchase pr	ice of a hou	se		
	(4)	Whether or not a home	has a swimi	ming pool in it		
17.	If yo	ou roll a pair of dice, what	is the proba	bility that at least one of the dice		
	is a	4 or the sum of the dice	is :			
	(1)	13/36	(2)	14/36		
	(3)	16/36	(4)	15/36		
18.	In h	ypergeometric distribution,	the trials a	re :		
	(1)	Independent	(2)	Dependent		
	(3)	Collectively Exhaustive	(4)	Additive		
19.	A random variable exponentially distributed with mean time between occurs is					
	equal to 32 minutes. The probability that the time between the next two occurrences					
	between 30 and 40 minutes is :					
	(1)	0.1051	(2)	0.2051		
	(3)	0.6051	(4)	0.7051		
20.	Service time at a fast food restaurant follows a Normal distribution, with a mean					
	of 5 minutes and a s.d. of 1 minute. The restaurant's policy is that if a customer					
	is not served within a maximum time period, they would not be charged for					
	the food ordered. The management wishes to provide this incentive program					
	to a	t most 10% of the customers	. The maxim	um guaranteed waiting time should		
	be s	et at :				
	(1)	6.28 min	(2)	6.65 min		
	(3)	7.33 min	(4)	6.96 min		
DLe	323-ST.	AT—A	5	P.T.O		

21.	Whic	ch of the following distribution	is suit	able to model the length of time			
	that	elapses before the first employe	ee pass	es through the security door of a			
	comp	oany ?					
	(1)	Normal	(2)	Exponential			
	(3)	Uniform	(4)	Poisson			
22.	The	waiting time for an ATM machine	is found	to be uniformly distributed between			
	1 an	d 5 minutes. What is the probab	oility of	waiting between 2 and 4 minutes			
	to us	se the ATM ?					
	(1)	0.20	(2)	0.25			
	(3)	0.50	(4)	0.75			
23.	If X,	Y, Z denote three jointly distrib	buted r	andom variables with joint density			
	function, then : $f(x,y,z) = \begin{cases} K(x^2 + yz); 0 \le x \le 1, 0 \le y \le 1, 0 \le \mathbf{Z} \le 1 \\ 0; & \text{otherwise} \end{cases}$						
		$f(x,y,z)=\langle 0;$		otherwise			
	Then	value of K is :					
	(1)	7/12	(2)	9/12			
	(3)	12/9	(4)	12/7			
24.	An u	inbiased estimator T_n is UMVUE	for θ,	then for every u.b.e. T_n^* of 0, which			
	one	is true ?					
	(1)	$V_{\theta}(T_n) \ge V_{\theta}(T_n^*) \forall \theta$	(2)	$V_{\theta}(T_n) \leq V_{\theta}(T_n^*) \ \forall \theta$			
	(3)	$\mathbf{V}_{0}(\mathbf{T}_{n}) = \mathbf{V}_{0}\left(\mathbf{T}_{n}^{*}\right) \forall 0$	(4)	$V_{\theta}(T_n) = V_{\theta}(T_n^*) = 1 \forall 0$			
25.	If X ₁	, ${\rm X_2},{\rm X_3}$ is a random sample of	size 3 f	rom a population with mean μ and			
	variance σ^2 , what is the value of λ for which T_3 = 1/3 (λX_1 + X_2 + X_3) is an						
		. for μ ?					
	(1)	1/4	(2)	1/3			
	(3)	1/2	(4)	1			
DL-3	23-STA	AT—A 6					

31.	If X is a Poisson $(x; \lambda)$, th	en the sufficient	statistic for λ is :			
	(1) λ_i	(2)	ΣX_i			
	W.		1			
	(3) ΣX_i^2	(4)	$\frac{1}{\Sigma X_i}$			
32.			e uniform distribution $f(x; 0) = \frac{1}{0}0$			
	< x < 0, then Y = max (X ₁	$X_2 \dots X_n$) is a	1 2			
	(1) Sufficient estimator of	of θ (2)	Consistent estimator of θ			
	(3) Efficient estimator of	θ (4)	Unbiased estimator of θ			
33.	Let $X_1 X_2 \dots X_n$ be a r	andom sample	from a density $f(x; \theta)$. If S =			
	$s(X_1 X_2 X_n)$ is a complete sufficient statistic and $T^1 = t$ (s), a function of					
	S, is an unbiased estimate	of $\tau(0)$, T^1 is	of τ(θ).			
	(1) UMVUE	(2)	BLUE			
	(3) an unbiased estimato	r (4)	Bayes estimator			
34.	The average growth of a certain variety of pine tree is 10.1 inches in 3 years.					
	A biologist claims that a new variety will have a greater growth in 3 years					
	A random sample of 25 of the new variety has an average 3 year growth of					
	10.8 inches and a s.d. of 2.1 inches. The appropriate null and alternative hypotheses					
	to test the biologists claim					
	(1) H_0 : $\mu = 10.1$ (Vs) H	ı: μ < 10,1				
	(2) $H_0: \mu = 10.1 \text{ (Vs) H}$	E Mi				
	(3) $H_0: \mu = 10.8 \text{ (Vs) H}$					
	(4) $H_0: \mu = 10.1 \text{ (Vs) H}$					
35.			on N(0, σ^2), a critical region based			
	on sample $X_1 X_2 X_n$ is $\Sigma X_i^2 < K$. Which alternative hypothesis provides uniformly					
	most powerful test ?					
	(1) $\sigma > \sigma_0$	(2)	$\sigma < \sigma_0$			
	(3) $\sigma^2 - \sigma_0^2$		$\sigma \neq \sigma_0$			
36.			000 hours with a s.d. = 250 hours.			
			fall below the claimed average life			
	by more than 5%, the samp					
	(1) 16	(2)	18			
	(3) 24	(4)	41			
DI -3	23-STAT—A	8	7.1			
DLFO	ao omi	Ω				

- Consider the problem of testing II0: X- Normal with mean 0 and variance 1/2 37. against H1: X~ Cauchy (0, 1). Then for testing H0 against H1, the most powerful size a Test:
 - (1) Does not exist
 - Rejects H_0 if and only if $|x| < C_3$ where C_3 is such that the test is of (2)size a
 - Rejects H_0 if and only if $|x| < C_4$ or $|x| > C_5$, $C_4 < C_5$ where C_4 and (3) C_5 are such that the test is of size α
 - Rejects H_0 if and only if $|x| > C_2$ where C_2 is such that the test is of (4)
- Let X_1, X_2, \dots, X_n be a random sample from uniform $(\theta, 5\theta), \theta > 0$. Defining 38. $X(1) = Min \{X_1 X_2...X_n\}$ and $X_n = Max \{X_1, X_2....X_n\}$. Then maximum likelihood estimator of 0 is :
 - (1) $X_{(1)}/5$

(3) $X_{(1)}$

- (2) $X_{(n)}$ (4) $X_{(n)}/5$
- X_1 X_2 X_n are independently and identically distributed random variables, 39. which follow Binomial distribution (1, p), to test H_0 : p = 1/2 (Vs) H_1 : p =

3/4, with size $\alpha = 0.01$, consider the test $\phi = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_i > C_n \\ 0 & \text{otherwise} \end{cases}$, then which

is true out of the following statements :

- As $n \to \infty$, Power of the test converges to one (1)
- As $n \to \infty$, Power of the test converges twice (2)
- As $n \to \infty$, Power of the test converges to half (3)
- As $n \to \infty$, Power of the test converges to three-fourth (4)
- Consider a triangular region 'R', with vertices (0, 0), $(0, \theta)$, $(\theta, 0)$ where $\theta > 0$. 40. A sample of size n is selected at random from this region R. Denote the sample as $((X_i, Y_i) : i = 1, 2, \dots, n)$. Then denoting $X_{(n)} = Max \{X_1, X_2, \dots, X_n\}$ and $Y_n = Max (Y_1, Y_2....Y_n)$, which of the following statements is true?
 - $X_{(n)}$ and $Y_{(n)}$ are independent
 - MLE of θ is $\frac{X_{(n)} + Y_{(n)}}{2}$ (2)
 - MLE of 0 is Max $(X_i + Y_i)$ (3)1 < i < n
- MLE of 0 is max $\{X_{(n)}, Y_{(n)}\}$ DL-323-STAT-A

41.	Neyr	nan-Pearson lemma provide	18 :			
	(1)	An unbiased test	(2)	A most powerful test		
	(3)	An admissible test	(4)	Sufficient test		
42.	If (X	$_1 X_2 \dots X_n$) is a random sar	nple from U	(0, 6), then the maximum likelihood		
	estin	nator of θ is :				
	(1)	Sample mean	(2)	Sample median		
	(3)	Sample minimum	(4)	Sample maximum		
43.	Whic	th of the following is the M	ILE of P(X ₁	\geq 1), given that $\{X_1, X_2, \dots, X_n\}$ is		
	a ra	ndom sample from the pro-	bability den	sity function $f(x; \theta) = \frac{1}{0} \exp \left\{ \frac{-x}{\theta} \right\}$		
	x >	0 and $x = 0$ otherwise?				
	(1)	$\exp \{-X\}$	(2)	$1 - \exp\left(-\overline{X}\right)$		
	(3)	$1-\exp\left\{-\frac{1}{\overline{X}}\right\}$	(4)	$\exp\left\{-\frac{1}{\overline{X}}\right\}$		
44.	In Wilcoxon Mann-Whitney Test for two samples of sizes n_1 and n_2 the value					
	of U could vary from :					
	(1)	0 to $n_1 n_2$	(2)	0 to $n_1 + n_2$		
	(3)	$\operatorname{Min}\ (n_1,\ n_2)\ \operatorname{to}\ n_1n_2$	(4)	Min (n_1, n_2) to $n_1 + n_2$		
45.	What is the non-parametric equivalent to two way Analysis of variance ?					
	(1)	Friedman test	(2)	Wald-Wolfowitz test		
	(3)	Kruskal-Wallis test	(4)	Wilcoxon Mann-Whitney test		
46.	Rank	rs are not used in which o	of the follow	ring non-parametric tests ?		
	(1)	Friedman test	(2)	Kolmogorov-Smirnov test		
	(3)	Kruskal-Wallis test	(4)	Mann-Whitney U test		
47.	You have to conduct a study comparing Army, Navy and RAF Cadets on a measur					
	of le	adership skills. There are u	mequal grou	p sizes and the data is skewed so		
	you	need to use a Non-parame	tric test; wł	nich test you choose ?		
	(1)	Mann-Whitney test	(2)	Kruskal-Wallis test		
	(3)	Wilcoxon test	(4)	Friedman test		
DL-3	23-ST/	AT A	10			

48.	The critical difference for multiple comparisons in Friedman's test with usual						
		ion is:					
	(1)	$Z\sqrt{rac{rk^2(r+1)}{6}}$	(2)	$\operatorname{Zr}\sqrt{\frac{k(k+1)}{6}}$			
	(3)	$ZK\sqrt{\frac{r(k+1)}{4}}$	(4)	$\mathbb{Z}\sqrt{\frac{rk(k+1)}{6}}$			
49.	Krus	kal-Wallis test differs from t	hat of Fri	edman test in respect of :			
	(1)	(1) Null Hypothesis about treatment effects					
	(2)	Ranking procedures					
	(3)	The distribution of test sta	tistic				
	(4)	Alternative hypothesis abou	t the trea	atment effects			
50.	If the	e sample size in Wald-Wolfowitz	runs test	is large, the variate R is distributed			
	with	mean:					
	(1)	$\frac{2m}{m+n}+1$	(2)	$\frac{2n}{m+n}+1$			
	(3)	$\frac{2mn}{m+n}+1$	(4)	$\frac{2mn}{m+n}$			
51.	Rela	tive efficiency in Non-parame	tric tests	is the ratio of:			
	(1)	Size of the samples	(2)	Power of two tests			
	(3)	Size of two tests	(4)	Average statistics			
52.	Wha	t is the formula for Kruskal-	Wallis ba	sed upon ?			
	(1)	Ranks	(2)	Deviations			
	(3)	Means	(4)	Categories			
53.	In a	Wilcoxon's signed Rank test,	the samp	de size is large, the statistic T+ is			
	distr	ributed with mean :					
	(1)	n(n-1)/4	(2)	n(2n + 1)/4			
	(3)	n(n + 1)/4	(4)	n(n + 1)/2			
54.	The	Eigen values of the matrix [0	1 1; 10	1; 110] is :			
	(1)	-1, 1 and 2	(2)	1, 1 and -2			
	(3)	-1, -1 and 2	(4)	1, 1 and 2			

- 55. PCA is used for :
 - (1) Supervised classification
 - (2) Unsupervised classification
 - (3) Semi-supervised classification
 - (4) Cannot be used for classification
- 56. The scatter matrix of the transformed feature vector is given by the expression under multivariate context:

(1)
$$\sum_{K=1}^{N} (x_k - \mu)(x_k - \mu)^{\top}$$
 (2)
$$\sum_{K=1}^{N} (x_k - \mu)^{\top}(x_k - \mu)$$

$$(3) \qquad \sum_{K=1}^{N} (\mu - x_k) (\mu - x_k)^1 \qquad \qquad (4) \qquad \sum_{K=1}^{N} (\mu - x_k)^1 (\mu - x_k)^2 (\mu$$

- 57. Linear Discriminant Analysis is :
 - (1) Unsupervised learning (2) Supervised learning
 - (3) Semi-supervised learning (4) Problem specific
- 58. If S_w is singular and N < D, its rank is at most (N is total number of samples, D dimension of data, C is number of classes):
 - (1) N + C (2) N
 - (3) C (4) N-C
- 59. Discriminant function in case of arbitrary covariance matrix and all parameters are class dependent is given by $(X^{T}W_{i}X + W_{i}^{T}X + W_{io}) = 0$, then the value of W is:
 - (1) $-\frac{1}{2}\sum_{i}^{-1}$ (2) $\sum_{i}^{-1}\mu_{i}$
 - (3) $-\frac{1}{2}\sum_{i}^{-1}\mu_{i}$ (4) $-\frac{1}{4}\sum_{i}^{-1}$
- 60. The Eigen vectors of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ are:
 - (1) (1 1 1), (1 0 1) and (1 1 0) (2) (1 1 -1), (1 0 -1) and (1 1 0)
 - (3) (-1 1 -1), (1 0 1) and (1 1 0) (4) (1 1 1) (1 0 1) and (-1 1 0)

61.	The	K^{th} pair of canonical variables is the pair of linear combinations U_k and
	V _k h	aving unit variances, which maximise the correlation among all choices that
	are	uncorrelated with the :
	(1)	Previous (K - 1) Canonical variable pairs
	(2)	K Canonical variables
	(3)	(K + 1) pair of Canonical pair of variables
	(4)	(K + 3) pair of Canonical variables

- 62. For a Random sample of 9 persons, the average pulse rate is $\bar{x} = 76$ beats per minute, and the sample s.d. is s = 5, then standard error of the sample mean is:
 - (1) 0.557 (2) 0.745 (3) 1.667 (4) 2.778
- 63. If the sample sizes are small or the within stratum ratios are approximately equal it is better to use :
 - (1) Separate estimators (2) Combined ratio estimators
 - (3) Separate ratio estimators (4) Weighted ratio estimators
- 64. The estimated variance of $\hat{\mu}_M$ under Regression estimation is :
 - $(1) \qquad \frac{N-n}{Nn} * MSE$
 - (2) $\frac{N}{N-n} * MSE$
 - (3) $\frac{n}{N} * MSE$

DL-323-STAT -A

- (4) $\frac{Nn}{N-n}$ *MSE (Where MSE is mean square error)
- 65. Let y_i for i = 1, 2 N₁ be the value of a population unit and y_i : a + bi where a and b are constants. Let V_{st}, V_{sys}, V_{SR} be the variance of stratified sample, systematic sample and simple Random sample respectively, then the ratio of V_{st} : V_{sy}; V_{SR} is :
 - (1) $n:n^2:1$ (2) $1:n:n^2$
 - (3) $1: n^2: n$ (4) $n^2: n: 1$

66.	Let	N be the number of units in a	populati	on from which a sample of size n			
	is to	is to be selected. Let 'p' be the inter-class correlation between the units of the					
	sam	e systematic samples, then the	relative p	recision of systematic sample mean			
	with	simple random sample mean	(V_{sys}/V_{SI})	() is :			
	(1)	$\frac{(\mathbf{N}-n)}{(\mathbf{N}-1)}(1-\rho(n-1))$	(2)	$\frac{(N-1)}{(N-n)}[N-\rho(n-1)]$			
	(3)	$\frac{(\mathbf{N}-1)}{(\mathbf{N}-n)}[1+\rho(n-1)]$	(4)	$\frac{(N-n)}{(N-1)}[N-\rho(n-1)]$			
67.	Whi	ch one of the following allocati	on proce	dures can be used when no other			
	infor	mation except that on the tota	l number	of units in the stratum is given?			
	(1)	Optimum allocation	(2)	Neyman allocation			
	(3)	Equal allocation	(4)	Proportional allocation			
68.	In F	Horvitz-Thompson estimation th	ne first o	rder inclusion probability is given			
	by:						
	(1)	$\pi_i = P\{i \in A\} - \sum_{A \not\equiv i \in A} P(A)$	(2)	$\pi_{\imath} = P\{i \in A\} = \sum_{A; i \in A} P(A) - 0.5$			
	(3)	$1-\pi_i=P\{i\in A\}=\sum_{A;i\in A}P(A)$	(4)	$1+\pi_i=\mathrm{P}\{i\in\mathrm{A}\}=\sum_{\mathrm{A};t\in\mathrm{A}}\mathrm{P}(\mathrm{A})$			
69.	Hory	Horvitz-Thompson estimator are:					
	(1)	Consistency and asymptotic	Normal				
	(2)	Consistency and u.b.e.					
	(3)	Efficient and u.b.e.					
	(4)	Asymptotic Normal and effic	cient				
70.	The	Horvitz-Thompson estimator for		tal Y = $\sum_{i=1}^{N} y_i$ is given by :			
	(1)	$\sum_{i \in A} y_i$	(2)	$\sum_{i \in \Lambda} \frac{y_i}{\pi_i}$			
	(3)	$\sum_{i \in A} \pi_i$	(4)	$\sum_{i \in A} y_i - \pi_i$			
71.	For	which Regression assumption d	oes the I	Ourbinwatson statistic test follows			
	(1)	Linearity	(2)	Homoscedasticity			
	(3)	Multicollinearity	(4)	Independence of errors			

14

DL-323-STAT—A

72.	real value outp		is leave-c	one real value input variable and one one out cross validation mean square $(X + c)$?
		X (I.V)	0 2	2 3
		Y (D.V)	2 2	2 1
	(1) 10/27	-	(2)) 20/27
	(3) 50/27		(4)) 49/27
73.	3 (degree 3 will the option base (i) Simple 1 (ii) Simple 1 (iii) Polynom	I perfectly fit this ed on these point Regression will he Regression will he ial of degree 3 w ial of degree 3 w	s data). N s : ave high l ave low b ill have l ill have l (2)	help of polynomial regression of degree Now consider below points and choose bias and low variance bias and high variance low bias and high variance low bias and low variance (i) and (iii) (ii) and (iv)
	(1) Include (2) Include (3) Focus of (4) Focus of	two or more depo two or more inde n unmeasured fac n organismic facto	ependent etors ors	variables
75.	(1) $r = \frac{\lambda(v - k)}{(k - k)}$		(2)	$r = \frac{\lambda(k-1)}{(\nu-1)} \text{ blocks}$
	$(3) r = \frac{1}{(v-1)^{n-1}}$	$\frac{\lambda}{\lambda(k-1)}$ blocks	(4)	$r = \frac{v-1}{\lambda(k-1)} $ blocks
76.				o best fit the data in logistic regression
	(1) Least so	quare error	(2)	2) Maximum likelihood

Euclidean distance (3)

(4) Mahalanobis distance

The BIBD and PBIB designs result in all treatments having the : 77.

BIBD < PBIBD variance (1)

PBIBD has small variance than BIBD (2)

Same variance (3)

BIBD variance + PBIBD variance

Imagine we conducted a 3-way independent ANOVA. How many sources of variance 78. would we have ?

(1) 3 (2) 7

(3) 8 (4) 4

79.	A factorial design in which both independent variables involve random assignment					
		rred to as a				
	(1)	Within subjects	(2)	Mixed		
	(3)			Between subjects		
80.	Expanding a 2 * 2 design to a 4 * 2 design means going from groups (in the 2 * 2) to groups (in the 4 * 2).					
	(1)	2; 4	(2)	4; 6		
	(3)	4; 8	(4)	2; 8		
81.	Consider the following L. P. P : Max Z = $x_1+5/2$ x_2 subject to $5x_1+3x_2 \le 15; -x_1+x_2 \le 1; 2x_1+5x_2 \le 10, x_1, x_2 \ge 0$. The problem has :					
	(1)	An unbounded solution	(2)	Infinitely many optimal solutions		
	(3)	No feasible solution	(4)	A unique solution		
82.	Max $z = 3x + 4y$ subject to $x \ge 0$, $y \ge 0$, $x \le 3, \frac{1}{2}x + y \le 4$; $x + y \le 5$					
	(1)	The optimal value is 19				
	(2)	(2) (3, 3) is an extreme point of the feasible region				
	(3)	(3) (3, 5/2) is an extreme point of the feasible region				
	(4) The optimal value is 18					
83.	A si	mplex is a :				
	(1)	Convex polyhedron	(2)	Half plane		
	(3)	Hull	(4)	Envelope		
84.	Whi	Which of the following statements is not true ?				
	(1)					
	(2)					
	(3)					
	(4)					
85.	lden	Identify the wrong statement:				
	 If the primal is minimisation problem, its dual will be a maximisation problem. 					
	(2)	(2) Columns of the constraint coefficients in the primal problem become columns of the constraint coefficients in the dual				
	(3)	(3) For an unrestricted primal variable, the associated dual constraint is an equation				
	(4)	(4) If a constraint in a maximisation type of primal problem is a "less than or equal to" type, the corresponding dual variable is non-negative				
86.	Both prob	are members of a category of LP				
160	(1)	Shipping problems	(2)	Routing problems		
	(3)	Network flow problem	(4)	Logistic problems		
DL-3	23-STA	AT—A	16	entering des 2000 (2011) (1900) 40 authority (1900) (1		

87.		ssignment problem can be viewed hich the capacity from each so	occial case of transportation problem			
	(1)	1; 1	(2)	Infinity; Infinity		
	(3)	0; 0	100000	1000 ; 1000		
88.	If a salesman starts from city 1, then any permutation of cities 2, $3 \dots n$ represents					
	the number of possible ways of his tour, then number of tours?					
	(1)	(n-1)!	(2)	n!		
	(3)	(n + 1)!	(4)	$\frac{1}{n!}$		
89.	The dual of the primal is the LPP of determining $W^1 \in \mathbb{R}^m$ so as to minimise:					
		$g(w) = b^{1}w$		g(w) = wb		
	(3)	$g(w) = w^{\dagger}b$	(4)	$g(w) = w^{T}bw$		
90.	Problems with n jobs and 2 machines can be solved graphically and the chart is called:					
	(1)	Idle chart	(2)	Control chart		
	(3)	Bar chart	(4)	Gantt chart		
		Player B				
91.	Player $A\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ with pay-off matrix, the value of the game is :					
	(1)	1	(2)	2		
	(3)	3	(2) (4)	4		
92.	In Modulo method using the formula $X_{i+1} = X_i$ a (modulo m), the simulated numbers generated lie between :					
	(1)	(0, 1)	(2)	(0, m)		
	(3)	(0, m-1)	(4)	(-5, 5)		
93.	Box Muller formulae for generating a standard Normal deviate is :					
	(1)	$(-2\log_e u_1)^{1/2}\cos{(2\pi u_2)}$	(2)	$(\log_{\pi} u_1)^{1/2} \cos (2\pi)$		
	(3)	$\frac{(-2\log_e u_1)}{\cos\left(2\pi u_2\right)}$	(4)	$(2\log_v u_1)(\cos2\pi u_2)$		
94.	In dominance property of a game rows and columns are removed.					
	(1)	(dominated; dominating)	(2)	(2; 3)		
	(3)	(3; 2)	(4)	(2; 2)		
95.	Game theory is concerned with :					
	(1) Predicting the results of bets placed on games like roulette					
	(2) The way in which a player can win every game					
	(3) The choice of an optimal strategy in conflict situations					
	(4)	Utility maximisation by firm:	s in pe	rfectively competitive markets		
DL-3	323-ST/	AT—A 1	7	- P.T.O		

- 96. In a M|M|1 Queuing model under equilibrium the mean arrival rate is 3 and mean service rate is 4. What is the probability that the server is busy?
 - (1) 0.25

(2) 0.75

(3) 0

- (4) 0.5
- 97. Consider an M | M | 1 queue with arrivals as a Poisson process at a rate of 8 per hour and a service time which is exponentially distributed at a rate of 6 minutes per customer. The waiting time of a customer in the queue has:
 - (1) A gamma distribution with p.d.f. $f(x) = \begin{cases} \frac{(10)^8 x^7 e^{-10x}}{7!}; \text{ for } x > 0 \\ 0; \text{ otherwise} \end{cases}$
 - (2) A distribution function given by $f(x) = \begin{cases} 1 (0.8)e^{-2x}; \text{ for } x > 0 \\ 0; \text{ otherwise} \end{cases}$
 - (3) mean waiting time of 4 minutes
 - (4) mean waiting time of 20 minutes
- 98. Let $\{x_n\}$ be a Markovian chain on $S = \{1, 2, 3\}$ with the following transition

probability matrix
$$P = \begin{bmatrix} 0 & 2/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$
, then which of the following properties

hold good for (x_n) ?

- (1) $\{x_n\}$ is irreducible
- (2) All states are aperiodic
- (3) All states are persistent
- (4) $\{x_n\}$ is irreducible and all states are aperiodic and persistent
- 99. If $P_{ii}^{(n)} = 1$ for all values of n, then the state i is called state.
 - (1) Reflecting

(2) Absorbing

(3) Communicating

- (4) Periodic
- 100. In a Queuing process with mean arrival rate λ, if L and W denote the expected number of units and expected waiting time in the system at the steady state, then Little's formula is:
 - (1) $W = L\lambda$

(2) $L = \lambda^2 W$

(3) $W = \lambda^2 L$

(4) $L = \lambda W$

Space for Rough Work

Space for Rough Work