Hall Ticket Number	O.F
	- Carlo

Q.B. No.

100009

Booklet Code:

A

Marks: 100

DL-322-MCB

Time: 120 Minutes

Paper-II

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE (Read the Instructions carefully before Answering)

 Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.

The candidate should ensure that the Booklet Code printed on OMR Answer

Sheet and Booklet Code supplied are same.

3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page. (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.

4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log

Tables are not permitted into the examination hall.

 There will be V4 negative mark for every wrong answer. However, if the response to the question is left blank without answering, there will be no penalty

of negative mark for that question.

Record your answer on the OMR answer sheet by using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) corresponding to the concerned question number in the OMR answer sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.

Change of an answer is NOT allowed.

- 8. Rough work should be done only in the space provided in the Question Paper Booklet.
- Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

1.	Match the following:		
	A I	1585	В
	I. Hansen	Α.	Staphylococcus
	II. Nicolaier	В.	Pneumococcus
	III. Ogston	C.	Diphtheria bacillus
	IV. Fraenkel	D.	Tetanus bacillus
	V. Loeffler	Ε.	Leprosy bacillus
	(1) I-D; II-E; III-D; IV-C; V-A		
	(2) I-E; II-D; III-A; IV-C; V-A		
	(3) I-E; II-D; III-A; IV-B; V-C		
	(4) I-E; II-B; III-C; IV-D; V-A		
2.	The mordant in capsule staining :		
	(1) Iodine	(2)	Copper salts
35	(3) Mercuric salts	(4)	Bile salts
3.	The resolution obtainable with an	electron	microscope is in the range of :
	(1) 3µm	(2)	0.3µm
	(3) 0.03μm	(4)	0.003µm
4.	A fermentation industry produces re	combina	nt enzyme as its product using fast
	growing production strain having its g	eneration	n time as 18 minutes. If the inocular
	size is 1 × 10* per ml, what will b	be the po	opulation of production strain after
	four hours ?	20 2000	47 10000
	(1) 1×10^6	(2)	1×10^{8}
	(3) 1×10^{10}	(4)	1×10^{12}
5.	Spirochetes can be best viewed un	der :	
	(1) Light microscope	(2)	Phase contrast microscope
	(3) Dark-field microscope	(4)	Interference microscope
6.	Which of the following statements	is NOT	TRUE for bacterial endospores ?
	 Contains half of the genome 	from it	s mother cell
	(2) Contains calcium dipicolinate	as its	structural chemical
	(3) Highly dehydrated by loosing		
	(4) Produced after active growth	due to	starvation
7.	Match each description on the right	with the	e major category it best fits on the
	left :		
	(I) genetic	(A)	Gram reaction
	(II) morphology	(B)	
	(III) biochemical	(C)	DNA probe
	(IV) nutritional	(D)	Metabolism
	(V) cultural	(E)	Simple medium
	(1) I-B, II-D, III-C, IV-A,V-E	(2)	I-C, H-A, III-D, IV-E, V-B
	(3) I-C, II-D, III-E, IV-B, V-A	(4)	I-B, II-A, III-E, IV-C, V-D
8.	To carryout studies on microbial po	pulation	which growth phase is desirable?
	(1) Lag Phase	(2)	Exponential Phase
	(3) Stationary Phase	(4)	Death Phase
9.	The free energy ΔG° is positive the	en :	
	(1) The reaction requires energy		
	(2) The reaction releases energy		
	(3) The reaction doesn't require		
	(4) The reaction docsn't release		
10.	Self assembly in virus is assisted b	V !	
	(1) Molecular chaperons	(2)	Proteases
	(3) DNA ligases	(4)	Restriction enzymes
		(*)	reconstruction chaymes

11.	The	symmetry of human papilloma	virus is	
	(1)	Icosahedral	(2)	Helical
	(3)	Binal	(4)	Both icosahedral and helical
12.	Enzy	mes found in within the virion	s of spe	ecific viruses :
	(1)	Lysozyme	(2)	Reverse transcriptase
	(3)	Neuraminidase	(4)	All these
13.	The	genome replication strategy in	Hepatit	is B virus :
	(1)	Single stranded RNA genome	that r	eplicates with DNA intermediate
	(2)	Double stranded DNA genom	e that	replicates with RNA intermediate
	(3)	Single stranded RNA genome	of plu	s sense
	(4)	Double stranded RNA genom	e of mi	nus sensc
14.	Mate	ch the following :		
		Animal viruses		Genome
	I.	Herpes	A.	Double stranded DNA
	11.	Reovirus	В.	Double stranded RNA genome
	III.	Poliovirus	C.	Single stranded RNA '+' sense
	IV.	Rabies	D.	Single stranded RNA '-' sense
	V.	Chicken anemia virus	E.	Single stranded DNA
	(1)	I-A; II-B; III-C; IV-D; V-E	(2)	I-A; II-C; III-B; IV-D; V-E
	(3)	I-A; II-D; III-B; IV-C; V-E	(4)	I-A; II-E; III-B; IV;C; V-D
15.	Mat	ch the following:		
		Human cancer		Invasive virus
	1.	Adult T-cell leukemia	Α.	Papilloma virus
	II.	Burkitt's lymphoma	В,	Hepatitis B
	III.	Hepato cellular carcinoma	C.	Epstein-Barr virus
	IV.	Cervical cancer	1)	Human T-cell leukemia virus
				(type-I)
	(1)	I-C; II-D; III-A; IV-B	(2)	t-C; II-D; III-B; IV-A
	(3)	I-D; II-C; III-B; IV-A	(4)	
16.	The	mechanism involved in the tra	ansfer o	f multiple drug resistance from one
	bac	terium to another is:		
	(1)	Specialized transduction of	a chrom	nosomal gene for drug resistance
	(2)	Transformation of chromosom	mal gen	es
	(3)	Conjugation with a cell con-	taining	free R' plasmid
	(4)	Transposition		
				75.03.4

17.	The	interphase of eukaryotic cell c	yele cor	nprises :				
	(1)	$\mathrm{G}_1,~\mathrm{S}$ and G_2	(2)	G_1 , M and G_2				
	(3)	G_0 only	(4)	G_0 , G_1 and G_2				
18.	Tran	nsition refers to :		-				
	(1)	(1) Formation of pyrimidine dimers						
	(2)	Change of a pyrimidine nucl	eotide t	o pyrimidine adducts				
	(3)	Change of a pyrimidine nucl	eotide t	o a purine nucleotide				
	(4)	Change of a purine nucleotic	le to ar	nother purine nucleotide				
19.	Whi	ch histone is not the part of th	ne nucle	eosome ?				
	(1)	H_1	(2)	$_{\mathrm{H_2A}}$				
	(3)	$\mathrm{H_2B}$	(4)	H ₃				
20.	Hist	ones are rich in amino acid res	sidue :					
	(1)	Arginine	(2)	Tryptophan				
	(3)	Aspartic acid	(4)	Phenylalanine				
21.	"Xenoderma pigmentosum" sufferers are defective in :							
	(1)	Base excision repair	(2)	Nucleotide excision repair				
	(3)	Alkyle transferase	(4)	Photoreactivation				
22.	Match the following:							
		Group-A		Group-B				
	1.	Polynucleotide kinase	Λ.	Adds nucleotides to the 3' strand of DNA				
	Π.	Exonuclease	В.	Adds phosphate to 5' OH end of DNA				
	III.	Alkaline phosphatase	C.	Joins DNA fragments by formation of Phosphodiester bonds				
	IV.	Terminal transferase	D.	Removes successive nucleosides from ends of the linear DNA				
	V.	DNA Ligase	E.	Removes Phosphates from 5' end				
	(1)	I-B; II- D; III-E; IV-A; V-C	(2)	I-B; II-D; III-E: IV-C; V-A				
	(3)	I-B; II-D; III-C; IV-E; V-A	(4)	I-В; П-D; III-A; 1V-Е; V-С				
23.	Expr	ession vectors are usually :		W				
	(1)	pBR	(2)	pUC				
	(3)	YAC	(4)	BAC				
DL-9	322-MC	B-A 4						

24.	In blu			eria the beta-galactosidase utilizes		
	substrate to produce blue colour.					
	(1)	Lactose	(2)	X-gal		
	(3)	IPTG	(4)	Glucose		
25.	All of	f the following are involved in t	ransla	tion of proteins EXCEPT:		
	(1)	r-RNA	(2)	Si-RNA		
	(3)	t-RNA	(4)	m-RNA		
26.	In a	DNA sample the molar amount	of G	is 20% then the molar amount of		
	T is	ž				
	(1)	20%	(2)	30%		
	(8)	40%	(4)	60%		
27.	Integ	ration of viral genome into bact	erial p	genome is called as:		
	(1)	Transformation	(2)	Conjugation		
	(3)	Transduction	(4)	Lysogeny		
28.	Whic	ch of the following statements re	egardir	ng microarray is incorrect ?		
	(1)	Microarrays are used for mea	suring	global gene expression		
	(2)	Microarrays are slides on whi	ch DN	A is spotted at high density		
	(3)	Microarrays can be used for s	studyin	ng expression levels of all genes of		
		an organism				
	(4)	Microarrays can measure the				
29.	The	trp operon RNA usually forms	the a	ttenuator hairpin by :		
	(1)	Base pairing of sequences 3:4	(2)	Base pairing of sequences 1:2		
	(3)	Base pairing of sequences 2:3	(4)	Base pairing of sequences 1:4		
30.	Whi	ch of the following is an anome	eric pa	ir ?		
	(1)	D-glucose and L-glucose	(2)	D-glucose and L-fructose		
	(3)	α-D-glucose and β-D-glucose	(4)	D-glucose and D-fructose		
31.	Ider	ntify the one, which has strong	bond o	energies :		
	(1)	Non-covalent hydrogen bond	(2)	O-H bond		
	(3)	H-H bond	(4)			
32.	The	free energy $\Delta G^{\prime\prime}$ released during	ng hyd	rolysis of ATP → ADP is :		
	(1)	-8.3 kcal mol ⁻¹	(2)	-7.3 kcal mei ⁻¹		
	(3)	-6.3 kcal mol ⁻¹	(4)			
DL	-322-M	CBA	5	P.T.O		

Match Column I with Column II, in relation to protein structure and level of 33. organization : Column I Column II (a) Primary Structure (i) Hydrogen - bonded arrangement of the polypeptide backbone (b) Secondary Structure The order of amino acid residues (ii) in the polypeptide chain (c) Tertiary Structure (iii) Sub-unit interactions - oligomers (d) Quaternary Structure (iv) 3-D arrangement of all atoms (1) a-(i); b-(ii); c-(iii); d-(iv) (2)a-(ii); b-(i); c-(iv); d-(iii) (3) a-(iv); b-(ii); e-(i); d-(iii) (4) a-(iii); b-(iv); c-(ii); d-(i) Which one among the following atoms does not give NMR signal ? 34. 13C (1) 170 (2)14N (3) 19_F (4) 35. Amino acids cannot be separated by : (1) Paper electrophoresis (2) TLC Ion-exchange Chromatography (4) (3) Gel filtration The following statement is correct about Michaelis-Menten kinetics: 36. \boldsymbol{K}_{m} the Michaelis constant, is defined as the dissociation constant of the (1) enzyme-substrate complex K_m the Michaelis constant, is a measure of the affinity the enzyme has (2)for its substrate (3) K_m the Michaelis constant, is expressed in terms of reaction velocity K_m the Michaelis constant, is defined as the concentration of substrate (4) required for the reaction to reach maximum velocity Separation of immunoglobulin G under reducing SDS-PAGE analysis gives 37. protein bands. (1) One (2) Four (3) Two Cannot be separated under reducing conditions (4) The ionization of proteins in MALDI - MS is achieved by : 38. (1) Short pulse of short-wave UV light / radiation Short pulse of IR light / radiation (2)Short pulse of LASER light / radiation (3) (4) Short pulse of ultra-sonic wave DL-322-MCB-A

39.	Which	n one of the following is an an	tigen a	nd NOT an immunogen ?
9.0	(1)	BSA	(2)	Ergosterol
	(3)	Growth hormon	(4)	Egg albumin
40.		inflammation typically involve	ម :	
191	(1)	Influx of macrophages	(2)	Influx of mast cells
	(3)	Influx of neutrophiles	(4)	Influx of basophiles
41.	The I	most abundant immunoglobulin	in saliv	ra is:
7.1.	(1)	Ig A	(2)	Ig E
	(3)	lg B	(4)	Ig D
42.		F_{ab} region of an lg is respons	sible for	· 4:
221	(1)	Binding to antigens	(2)	Binding to Fc-receptors
	(3)	Binding to Macrophases	(4)	Binding to Neutrophiles
43.		s II MHC proteins are found o	n the s	urface of :
40.	(1)	B lymphocytes	(2)	Macrophages
	(3)	Dendritic cells	(4)	T lymphocytes
44.	The	primary lymphoid organ respon	sible fo	or B cell development in humans :
	(1)	Bone marrow	(2)	Thymus
	(3)	Thyroid	(4)	Skin
45.	14-6	is a pro-inflammator	y cytok	ine.
401	(1)	1L-4	(2)	1L-3
	(3)	116	(4)	1L-10
46.		tify the selective medium for l	nybridon	na cells :
14,747.77	(1)	TMAT medium	(2)	HAT medium
	(3)	Nutrient Agar medium	(4)	DMEM medium
47.		erculin reaction is an example	of :	
	(1)	Type I HS	(2)	Type III HS
	(3)	Type IV HS	(4)	Type II HS
48.		ch the following:		
		Autoimmune diseases	Aff	ected Organs/areas
		(A)		(B)
	I.	Myastenia grevis	Α,	Cartilage
	II.	Good Pasteur's Syndrome	В.	Adrenal
	III.	Rhumatoid arthritis	C.	Skeletal
	IV.	Hashimato disease	D.	Kidney
	V.	Addisons disease	E.	Thyroid
	(1)	I-A; II-B; III-D ;IV-E; V-C	(2)	I-C; II-D; III-A; IV-E; V-B
	(3)	I-B; II-D; III-E; IV-A; V-C	(4)	I-D; II-C; III-A; IV-E; V-B
DL	-322-M	CB—A	7	P.T.O

syrup as substrate with 100% efficient production strain Lactobacillus sp. ferments 10 gram glucose into Lactic acid, what is the quantity of product product and percentage of 'C' recovery? (1) 20 g and 50% (2) 10 g and 100% (3) 10 g and 50% (4) 5 g and 50% 50. The following one is not the fermentation product: (1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation product (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the log phase (C) Higher yields when cells enter the lag phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for	19,				l as its main product using glucose		
and percentage of 'C' recovery? (1) 20 g and 50% (2) 10 g and 100% (3) 10 g and 50% (4) 5 g and 50% 50. The following one is not the fermentation product: (1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation procedure (1) Alcohol is produced as end product (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for							
(1) 20 g and 50% (2) 10 g and 100% (3) 10 g and 50% (4) 5 g and 50% 50. The following one is not the fermentation product: (1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation product (1) Alcohol is produced as end product (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the lag phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for				acid, wha	it is the quantity of product produced		
(3) 10 g and 50% (4) 5 g and 50% The following one is not the fermentation product: (1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol The following statement is NOT TRUE in the definition of fermentation product (1) Alcohol is produced as end product (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for					1480-07-07-02-07-07-07-07-07-07-07-07-07-07-07-07-07-		
The following one is not the fermentation product: (1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation proceduct (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for							
(1) CO ₂ (2) O ₂ (3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation proceduct (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for of the end product. (1) recovery, purification (2) isolation, preservation (3) preservation, disposal (4) development, labeling 54. Yield Coefficient means: (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product (5). The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese	=0						
(3) Lactate (4) Ethanol 51. The following statement is NOT TRUE in the definition of fermentation procedured (1) Alcohol is produced as end product (2) It uses organic compound as electron acceptor (3) It results in incomplete exidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for of the end product. (1) recovery, purification (2) isolation, preservation (3) preservation, disposal (4) development, labeling (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product (5). The Penicilium camemberti is used in the production of : (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese	790.						
51. The following statement is NOT TRUE in the definition of fermentation process. (1) Alcohol is produced as end product. (2) It uses organic compound as electron acceptor. (3) It results in incomplete oxidation of organic substrates. (4) Never requires an electron transport system. 52. Antibiotics are usually produced in fed batch reactions. The reasons are. (A) The presence of precursors which are not useful to the cells. (B) Gives higher yields when cells enter the stationary phase. (C) Higher yields when cells enter the log phase. (D) Higher yields when cells enter the lag phase. (1) (A) and (B) (2) (A) and (C). (3) (A) and (D) (4) (B) and (D). 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for					**		
(1) Alcohol is produced as end product (2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for	2.			2.550.000			
(2) It uses organic compound as electron acceptor (3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for	51.						
(3) It results in incomplete oxidation of organic substrates (4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		lake v					
(4) Never requires an electron transport system 52. Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for							
Antibiotics are usually produced in fed batch reactions. The reasons are (A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for							
(A) The presence of precursors which are not useful to the cells (B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for							
(B) Gives higher yields when cells enter the stationary phase (C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for	52.	Antibiotics are usually produced in fed batch reactions. The reasons are :					
(C) Higher yields when cells enter the log phase (D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		I Promote which are not deeth to the cens					
(D) Higher yields when cells enter the lag phase (1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		(B)	Gives higher yields when ce	lls enter	the stationary phase		
(1) (A) and (B) (2) (A) and (C) (3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		(C)	Higher yields when cells en	ter the le	og phase		
(3) (A) and (D) (4) (B) and (D) 53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		(D)	Higher yields when cells en	ter the la	ag phase		
53. In practical industrial microbiological processes, there must be an efficient economical mass-scale method available for		(1)	(A) and (B)	(2)	(A) and (C)		
economical mass-scale method available for		(3)	(A) and (D)	(4)	(B) and (D)		
economical mass-scale method available for	53.	In pr	actical industrial microbiologica	l process	es, there must be an efficient and		
of the end product. (1) recovery, purification (2) isolation, preservation (3) preservation, disposal (4) development, labeling 54. Yield Coefficient means: (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		econ	omical mass-scale method	available	forand		
(3) preservation, disposal (4) development, labeling 54. Yield Coefficient means: (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese							
(3) preservation, disposal (4) development, labeling 54. Yield Coefficient means: (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(1)	recovery, purification	(2)	isolation, preservation		
54. Yield Coefficient means: (1) Conversion rate of a substrate into biomass or product (2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product (5). The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(3)	preservation, disposal	(4)			
(2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese	54.	Yield	Coefficient means :		and the second s		
(2) Production time of biomass or product (3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(1)	Conversion rate of a substra	te into b	iomass or product		
(3) Produced total biomass or product (4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(2)					
(4) Conversion efficiency of a substrate into product 55. The Penicilium camemberti is used in the production of: (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(3)		174			
55. The Penicilium camemberti is used in the production of : (1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese		(4)	Conversion efficiency of a su	bstrate i	nto product		
(1) Soft ripened cheese (2) Soft unripened cheese (3) Semi-Soft ripened cheese (4) Hard ripened cheese	55.	The I	Penicilium camemberti is used	in the p	reduction of:		
(3) Semi-Soft ripened cheese (4) Hard ripened cheese							
DI 930 M/IB 4		(3)	Semi-Soft ripened cheese	W-100000			
11922/45/28/28/18 (2005) 1/20.	DL-3	22-MCI	5		222000		

56.	Single	Cell Protein from Pichia angus	da pro	duced from :				
	(1)	Molasses	(2)	Methanol				
	(3)	Whey	(4)	Methane				
57.	Match	the following:						
		SCP production process		Substrate				
	1.	BEL process	A.	Potato processing waste				
	11.	SymBa process	B.	Sulphite liquor				
	Ш.	Pekilo process	C.	Methanol				
	IV.	Pruteen process	D.	Whey				
	(1)	I-D;II-A;III C;IV-B	(2)	I-D;H-B;HI-C;IV-A				
	(3)	I-D;II-A;III-B;IV-C	(4)	I-D-II-C;III-B;IV-A				
58.	Match	the following methods of steri	lization	for their application :				
		Methods of sterilization		Application				
	I.	Hot air oven	A.	Packed foods				
	II.	Filtration	B.	Glass ware				
	III.	UV	C.	Culture media				
	IV.	Steam sterilizer	D.	Bio-safety cabinet				
	V.	Gamma radiation	E.	Serum				
	(1)	I-E; II-D; III-C; IV-A; V-B	(2)	I-A; II-B; III-C; IV-D; V-E				
	(3)	I-C; II-A; III-B; IV-E; V-D	(4)	I-B; II-E; III-D; IV-C; V-A				
59.	Match	Match each organism on the left with the phenomenon on the right with which						
		it best corresponds in the context of canned food spoilage :						
	I.	Bacillus thermoacidurans	A.	Flat sour spoilage of corn				
	II.	Clostridium sporogenes	B.	Sulfide spoilage				
	III.	Bacillus stearothermophilus	C.	Flat sour spoilage of tomato juice				
	IV.	Penicillium spp	D.	Putrifactive anaerobe spoilage				
	v.	Clostridium nigrificans	E.	Surface growth and must odor				
	(1)	I-C; II-E; III-B; IV-A; V-D	(2)	I-B; II-D; III-E; IV-A; V-C				
	(3)	I-C; II-D; III-A; IV-E; V-B	(4)	1-B; II-D; III-E; IV-A; V-C				
60.	22000	eurization is a treatment of mill	at:					
	(1)	High temperature treatment						
	(2)	Steaming treatment						
	(3)	Low temperature treatment						
	(4)	High and low temperature tro	atment	£.				
DL	322-MC			P.T.O				

61.	Common food poison microbes a	rc :			
	(1) Salmonella and E.coli				
	(2) Streptococcus and Clostrid	ium			
	(3) Salmonella and Clostridiu	m			
	(4) E.coli and Clostridium				
62.	TA spoilage of canned foods occ	urs at :			
	(1) pH between 5.3 and 4.5	(2)	pH between 4.5 and 3.7		
	(3) pH below 3.7	(4)	pH above 5.3		
63.	The calcium binding protein pre-	sent in Rh	izobium and Bradyrhizobium :		
	(1) Lectins	(2)	Leg Haemoglobin		
	(3) Nitrogenase	(4)	Rhicadhesin		
64.	In anoxic ammonia oxidation k	nown as '	Anammox' phenomenon by micro-		
			at plants supplemented with NO^3		
			owing reactions correctly represents		
	the phenomenon ?		1.5. A. L.		
	(1) $2NH_3 + O_2 + 2H^+ + 2e^-$	→ NH ₃ OH	+ N ₂ + H ₂ O		
	(2) $3NH_4^+ + 3NO_3^- \rightarrow 2N_2^- +$				
	(3) $5NH_4^+ + 3NO_3^- \rightarrow 4N_2^- +$	9H ₂ O + 2	H ⁺		
	(4) $5NH_4^+ + 3NO_3^- \rightarrow 8N_2^- +$	8H ₂ O + 2	H ⁺		
65.	In a Chemolithotrophic oxidation of ammonia to nitrate by nitrifying autotrophic				
	bacteria, the oxidation state of nitrogen changes from to				
	$(1) \qquad 0 \implies +3$		+3 → +5		
	(3) −3 → +3	(4)	- 3 → +5		
66.	The autotrophic bacteria that re-	duces nitra	ites to free nitrogen :		
	(1) Nitrobacter	(2)	Nitrosomonas		
	(3) Nitrosococcus	(4)	Thiobacillus denitrificans		
67.	The most effective pesticide is :	0			
	(1) Organophosphates	(2)	Carbonates		
	(3) Organochlorines	(4)	Organonitrates		
68.	The upper region of trickling filt	ers is fav	ourable for the growth of :		
	(1) Bacteria	(2)	Fungi		
	(3) Protozoa	(4)	Algae		
DL-3	322-MCB—A	10			

69.	The	female urethra usually contain	18 :			
	(1)	Gram positive cocci	(2)	Gram positive rods		
	(3)	Gram negative cocci	(4)	Gram negative rods		
70.	Mate	h the following:				
		Diseases		Common causative agent		
	I.	Tinea corporis	(a)	Microsporum		
	11.	Tinea capitis	(b)	T. rubrum		
	III.	Endothrix hair infection	(e)	T. violaceum		
	IV.	Favus	(d)	M. gypsum		
	V.	Tinia imbricate	(e)	T. concentricum		
	(1)	I-b; II-a; III-c; IV-d; V-e	(2)	I-b; II-a; III-d; IV-c; V e		
	(3)	I-b; II-a; III-d; IV-e; V-c	(4)	I-a; II-b; III-c; IV-e; V-d		
71.	Aner	robic Spirochetes are present	in the fo	llowing region of human body:		
	(1)	Mouth and teeth	(2)	Conjuctive		
	(3)	Upper intestine	(4)	Skin		
72.	The following stain is an example for Romewsky stain :					
	(1)	Giemsa stain	(2)	Ziehl-Neelsen stain		
	(3)	Gram stain	(4)	Malachite-green stain		
73.	Rheumatic fever is a follow-up disease caused by :					
	(1)	Streptococcus pyogenes	(2)	Streptococcus pneumoniae		
	(3)	Streptococcus aureus	(4)	Streptococcus faecalis		
74.	The causative agent of Meningitis was discovered by :					
	(1)	Ogston	(2)	Weichselbaum		
	(3)	Nicolaier	(4)	Shiga		
75.	The	disease 'Typhus' is caused by	· :			
	(1)	Rickettsia rickettsii	(2)	Rickettsia prowazekil		
	(3)	Ehrliehia	(4)	Orientiutsutsugamuschi		
76.	Ар	atient's throat swabed sample i	s inoculat	ed on to an agar medium, incubated		
		observed. Which of the follow				
	(1)	Colonies represent a mixed				
	(2)	Colonies most likely repre-				
	(3)	Isolated colonies represent				
	(4)	Entire growth is likely to				
DI	322-M	CB—A	11	P.T.C		

77.	The	enzymes which destroys to	xic :	oxygen a	are:	
	(1)	Catalase		(2)	Peroxidase	
	(3)	Superoxide dismutase		(4)	All the above	
78.	Chen	nooraganotrophs conserve er	nergy	from o	xidation of organic compounds by:	
	(1)	Substrate level phosphor			and the first of the control of the	
	(3)	(1) only		(4)	Both (1) & (2)	
79.	Mate	h the following pairs base	d on	their r	elatedness :	
	(I)	Reversetranscriptase	(A)	Breakir	ng Peptidoglycan	
	(II)	Nuraminadase	(B)	Glycopi	roteins	
	(III)	Lysozyme	(C)	Transcr	ibing RNA into DNA intermediate	
	(IV)	Viral envelope	(D)	Breakd	own of connective tissue	
	(1)	I-B, II-A, III-D, IV-C		(2)	I-C, H D, III-A, IV-B	
	(3)	I-A, II-B, III-D, IV-C		(4)	I-B, II-D, III-C, IV-A	
80.	Segn	iented genomes are present	t in	:		
	A.	Orthromyxovirus				
	B.	Influenza virus				
	C.	SV_{40}				
	D.	Reo virus				
	(1)	A and B		(2)	A and C	
	(3)	C and D		(4)	A and D	
81.	A vai	riety of adducts that can blo	ck t	ranscript	ion and replication are formed by:	
	(1)	Arylating agents		(2)	X-rays	
	(3)	UV-rays		(4)	Nitrous oxide	
82.	The 1	The four branched 'holliday' structures are formed during :				
	(1)	Transposition		(2)	Homologous recombination	
	(3)	Site-specific recombination	n	(4)	Heterologous recombination	
83.	The inhibitor of prokaryotic transcription ;					
	(1)	Erythromycin		(2)	Ciprofloxin	
	(3)	Rifampicin		(4)	Kanamyein	
84,	The r	most important discovery the	at le	d to the	development of r-DNA technology	
	was:					
	(1)	Double helix model of Wa	atsor	and C	rick	
	(2)	Discovery of restriction e	ndor	ucleases		
	(3)	Discovery of ligase enzym	ie			
	(4)	Discovery of plasmids				
DL-3	22-MCI	B—A	12			

85.	An a	mino acid with side chain o	ontaining b	asic groups is :				
	(1)	2-Amino Propanoie acid						
	(2)	2-Pyrrolidine Carboxylic a	eid					
	(3)	(3) 2-Amino 3-mercapto propanoic acid						
	(4)	2-Amino 5-guanidovaleric	acid					
86.	In th			groups present in complex I: NADH				
		drogenase is :						
	(1)	Heme, Cu _A , FAD	(2)	Fe-S, FMN				
	(3)	Fe-S, FAD	(4)	Fe-S, Heme, CuB				
87.		of the following radio-isoto	oes is a γ-e	mmiter:				
	(1)	125 _I	(2)	¹⁴ C				
	(3)	³ H	(4)	32p				
88.	A p	lasma cell secretes :						
	(1)		city related	to that on the surface of parent				
		B cell						
	(2) Different types of antibodies							
	(3)							
	(4)	Antibody of two antigens	specific					
89.	One	One of the following enzymes is not used as an enzyme probe in ELISA						
	technique :							
	(1)	Alkaline Phosphtatase	(2)	Horse radish peroxides				
	(3)	Trypsin	(4)	Urease				
90.		syphilis pathogen can be i	dentified by	using:				
. 0100000	(1)	Flocculation	(2)	Agglutination				
	(3)	Neutralization	(4)	Bactericidal test				
91.	10.000		d in delayed	I type hypersensitivity (Type IV) is:				
	(1)	IgE sensitization of mas						
	(2)	IgG interaction with cell		tigen				
	(3)	IgG interaction with sol						
	(4)							
DI	0.	ICB—A	13	P.T.O				
DL.	022-19	N/13 -11	200					

In (continuous bioreactors :		
(1)	Biomass, substrate and produ	ct cone	entrations do not change with time
(2)			
(3)			
(4)			
The	he enzyme used in the removal of Ω_2 from beer :		
(1)			
(3)	Glucose oxidase/Catalase	(4)	β Amylase
World Intellectual Property Day is :			
(1)	January 26th	(2)	May 26th
(3)	June 26th	(4)	April 26th
Clostridium perfringens poison is an ;			
(1) Enterotoxin produced during vegetative stage			
(2) Enterotoxin produced during sporulation			
(3) Endotoxin produced during vegetative stage			
(4)	Endotoxin produced during sp	porulat	on
The concept of using microbes in cleaning up of environment is called :			
(1)	Fermentation		
(3)	Biomining	(4)	Bioaugmentation
Azolla is used as biofertilizer because it pocess :			
(1)	Rhizobiumn	(2)	Cyanobacteria
(3)	Myccorrhizae	(4)	Large quantities of humus
AZT inhibits synthesis of single stranded viral by the enzyme			
(1)	RNA, reversetranscriptase	(2)	Invertase, DNA
(3)	DNA, reversetranscriptase	(4)	RNA, topoisomerase
The	The main distinguish of Legionellosis from other water-borne diseases :		
(1)			
(2)	It transmitted through sewage	e water	
(3)	It transmitted through aeroso	ls	
(4)	It transmitted through contan	inated	food
The fatal neurodegenerative disorders are caused by the following agents :			
(1)	Virions	(2)	Prions
(3)	Viriods	(4)	D1 particles
22-MC	B—A 14	20	
	(1) (2) (3) (4) The (1) (3) Clos (1) (2) (3) (4) The (1) (3) Azol (1) (3) The (1) (3) The (1) (2) (3) (4) The (1) (3) (3) (4) The (1) (4) (4) The (1) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	(1) Biomass, substrate and produced The enzyme used in the removal of the enzyme used to the enz	(1) Biomass, substrate and product cone (2) Biomass, substrate and product cone (3) Biomass, substrate and product cone (4) Biomass, substrate and product cone (4) Biomass, substrate and product cone (5) The enzyme used in the removal of O ₂ fre (1) Acetolactase decarboxylase (2) (3) Glucose oxidase/Catalase (4) World Intellectual Property Day is: (1) January 26th (2) (3) June 26th (4) Clostridium perfringens poison is an: (1) Enterotoxin produced during vegetative (2) Enterotoxin produced during vegetative (3) Endotoxin produced during sporulative (4) Endotoxin produced during sporulative (5) Endotoxin produced during sporulative (6) Endotoxin produced during sporulative (7) Fermentation (2) (8) Biomining (4) Azolla is used as biofertilizer because it p (9) Rhizobiumn (2) (1) Rhizobiumn (2) (3) Myccorrhizae (4) AZT inhibits synthesis of single stranded and according to the produced during water (2) (3) DNA, reversetranscriptase (4) The main distinguish of Legionellosis from (1) It transmitted through drinking water (2) (3) It transmitted through drinking water (3) It transmitted through contaminated (4) The fatal neurodegenerative disorders are according to the fatal neurodegenerative disorders are a

Space for Rough Work

Space for Rough Work