Hall Ticket Number	O.P. N	
	Q.B. No.	100301
	h	

Booklet Code:

Marks: 100

DL-315-BOT

Time: 120 Minutes

Paper-II

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE (Read the Instructions carefully before Answering)

 Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.

The candidate should ensure that the Booklet Code printed on OMR Answer

Sheet and Booklet Code supplied are same.

3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page. (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.

4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log

Tables are not permitted into the examination hall.

- There will be 1/4 negative mark for every wrong answer. However, if the
 response to the question is left blank without answering, there will be no penalty
 of negative mark for that question.
- 6. Record your answer on the OMR answer sheet by using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) corresponding to the concerned question number in the OMR answer sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.

Change of an answer is NOT allowed.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

1.	Of	the following, which is	the bost de	escription of the second law of			
		modynamics ?					
	(1)	The total energy of the	universe is	a constant			
	(2)	(2) The efficiency of the heat engine can never be greater than 20 percent					
	(3)	The entropy of the unive	erse is alwa	ys increasing			
	(4)	As the altitude increases	s, the boiling	g point of water decreases			
2.	The	velocity of an enzyme cata	dyzed reaction	on was measured as a function of			
	subs	strate concentration in the p	resence and	absence of an inhibitor separately.			
	The	line-Weaver Burk plot of the	data generat	ed two straight lines that intersected			
	on t	he Y-axis. The nature of th	his inhibition	n is :			
	(1)	Uncompetitive	(2)	Noncompetitive			
	(3)	Competitive	(4)	Mixed			
3.	All of the following statements about monomeric G proteins are true except :						
	(1)	They are regulated by G	TP-GDP exc	hange proteins.			
	(2)	They are regulated by G	TPase activa	nting proteins.			
	(3)	(3) They regulate enzymes that synthesize cGMP.					
	(4)	They regulate hormone s	ignal.				
4.	Carl	Carbon fixing enzyme in C4 plants is :					
	(1)	Alpha amylase	(2)	RUBISCO			
	(3)	Sucrose synthase	(4)	PEP carboxylase			
5.	Whi	Which of the following represents the sequence of electron flow in the light					
	reac	reactions of photosynthesis in higher plants ?					
	(1)	$(1) \qquad \text{H}_2\text{O} \rightarrow \text{photosystem} \text{I} \rightarrow \text{photosystem} \text{II} \rightarrow \text{NADP}$					
	(2)	${ m H_2O}$ $ ightarrow$ photosystem II $-$	→ photosyste	m I \rightarrow NADP			
	(3)	${\rm H_2O}$ \rightarrow photosystem II -	> photosyste	m I \rightarrow ATP			
	(4)	$NADPH \rightarrow photosystem$	$I \rightarrow photosy$	stem II $ ightarrow$ O $_2$			
DI.	315-BC	OT—A	9				

6.	The	glyoxylate cycle is found in	plants and	bacteria but not in animals. The
	lack	of this cycle in animals res	sults in the	inability to :
	(1)	Synthesize oxaloacetate fr	om isocitrat	e
	(2)	Synthesize glutamate from	malate	
	(3)	Perform gluconeogenesis f	rom amino	acids
	(4)	Perform gluconeogenesis i	from lipids	
7.	The	selective screening of crypto	chrome mut	ants over phytochromes should be
	done	under:		
	(1)	Blue light	(2)	White light
	(3)	Red + blue light	(4)	Red light
8.	Photoinhibitory damage is reflected by :			
	(1)	High turnover rate of D1	protein in	PSII
	(2)	Low turnover rate of D1	protein in	PSII
	(3)	High turnover rate of D2	protein in	PSII
	(4)	Low turnover rate of D2	protein in	PSII
9,	The	hormone that is rapidly sy	nthesized du	aring water stress is :
	(1)	Cytokinin	(2)	ABA
	(3)	Auxin	(4)	GA3
10.	Resistance to herbicide glyphosate in the transgenic plants is brought by :			
	(1)	Glutamine synthase		
	(2)	Acetoacetate synthetase		
	(3)	Enolpyruvyl shikimate-3-1	ohosphate sy	nthase
	(4)	Aspartate aminotransfera	se	
DL-	315-B	OT—A	3	P.T.O

11.	Duri	ng vernalization FLC gen	e epigenetical	y suppressed	by	
	(1)	HDACs	(2)	PRC2 comple	x	
	(3)	PRMT	(4)	TET		
12.	Whic	ch of the following is not	true for allel	ochemicals ?		
	(1)	Non-nutrinational molec	ules			
	(2)	Stimulatory and inhibite	ory activity of	neighboring p	olants	
	(3)	Secreted by all parts of	plants			
	(4)	Secondary metabolites				
13.	Aqua	aporins are class of proteins	that are relat	vely abundant i	n plant membranes.	
	The	The following are certain statements regarding the properties of aquaporins				
	(I)	Aquaporins form water	channels in r	nembrane		
	(II)	Some aquaporins also transport uncharged molecules such as NH_3				
	(III)	The activity of aquaporins is not regulated by phosphorylation				
	(IV)	The activity of aquapor reactive oxygen species.		ed by calcium	concentration and	
	Whie	ch one of the following con	mbinations of	the above stat	ements is correct ?	
	(1)	I, II and IV	(2)	II, III and IV		
	(3)	I, III and IV	(4)	l, II and III		
14.	Whic	Which of the following plant groups are evolved during the Silurian period				
	(1)	Bryophyta	(2)	Psilophyta		
	(3)	Lycophyta	(4)	Spherrophyta		
15.	Whic	Which of the following best describes a significant difference between vascular				
	and	and non-vascular plants ?				
	(1)					
	(2)	whereas non-vascular plants do not				
	(4)	Non-vascular plants are homosporous, whereas vascular plants are				
	191	heterosporous	s maller of the ma	1	202 17.72 a 1	
	(3)	In non-vascular plants the in vascular plants they			are living, whereas	
	(4)				1 6 11 1 1	
	(4)	In vascular plants, the s			, at 12	
		dispersal of spores, who	neas in non-v	ascurar plants	they do not	

16.	Whic	h of the following tissues is	useful for	conduction of food material in the			
	rhizo	me of polytrichum ?					
	(1)	Leptoids	(2)	Hydroids			
	(3)	Stereids	(4)	Amylom			
17.	Whic	h of the following was mor	e abundant	during Cretaceous period ?			
	(1)	Mosses	(2)	Gymnosperms			
	(3)	Angiosperms	(4)	Lycophytes			
18.	Whie	h of the following statemer	nts are <i>corr</i> e	ect ?			
	(A)	Thick walled tracheids ar	d narrow ra	ays is the character of pycnoxylic			
		wood.					
	(B)	Thin walled tracheids and broad rays is the character of manoxylic wood.					
	(C)) Thick walled tracheids and broad rays is the character of pycnoxylic wood.					
	(D)	The wood of pinus is pycnoxylic acid.					
	(1)	(A), (B) and (D)	(2)	(A), (B) and (C)			
	(3)	(B), (C) and (D)	(4)	(A), (B), (C) and (D)			
19.	What is the shape of conifer leaf adapted to heavy snow ?						
	(1)	Flattened	(2)	Cubical			
	(3)	Needle like	(4)	Scaly			
20.	Which of the following is the difference between the Shoot Apical Meristem (SAM						
	to Root Apical Meristem (RAM) ?						
	(a)	(a) RAM is not involved in organogenesis					
	(b)	(b) RAM produces new cells acropetally to renew the root cap					
	(c)	(c) RAM is involved in organogenesis					
	(1)	(a) and (b)	(2)	(b) and (c)			
	(3)	(a) and (c)	(4)	(a), (b) and (c)			
DL-	315-B	OT—A	ō	P.T.C			

21.	Which of the following is/are the function(s) of Expansins ?						
	(a)	involved in reaction meth	ylation				
	(b)	involved in transglycosyla	tion				
	(c)	involved in acetylation					
	(d)	Cross-linking network in	cell walls				
	(1)	(a) and (b)	(2)	(a), (b), (c) and (d)			
	(3)	(a) and (d)	(4)	(d) only			
22.	WO	K (Wuschel Homeo box like)	family rela	ted to:			
	(1)	Cell division and develops	nent in the	early embryo of Arabidopsis			
	(2)	Photosignaling in Arabido,	psis				
	(3)	Transpiration in Arabidop	sis				
	(4)	Vascular tissue proliferati	on				
23,	Belo	w are examples of plants	with symbi	otic associations. Which is best			
	com	oination ?					
	(a)	Glyine max	(\mathbf{I})	Bradyrhizobium japonicum			
	(b)	Trifolium sativa	(11)	Rhizobium leguminosarum			
	(c)	Saccharum app	(III)	Gluconacetobacter diazotrophicus			
	(d)	Medicago sativa	(IV)	Sinorhizobium meliloti			
	(1)	(1) $(a) - (I), (b) - (II), (c) - (III), (d) - (IV)$					
	(2)	(2) (a)—(IV), (b)—(II), (c)—(I), (d)—(III)					
	(3)	(3) (a)—(III), (b)—(II), (c)—(IV), (d)—(I)					
	(4)	(a)— (III) , (b) — (I) , (c) — (IV)	, (d)—(II)				
24.	A mutation deleting an upstream activating sequence for a single gene would						
	be e	xpected to be :					
	(1)	polar	(2)	trans-dominant			
	(3)	silent revertible	(4)	cis-dominant			
25.	After	After pollination, the following events are very important for fertilization to occur					
	in fl	owering plants ?					
	(1)	Sperms swim to the egg a	and the pola	r nuclei			
	(2)	Meiosis occurs within the	pollen grain	n			
	(3)	A pollen tube grows from	the stigma	to the ovule			
	(4)	Petals close around the re	eproductive	parts			

26.	Aspir	in delays senescence in cut parts of plant and keeps flower fresh for longer				
	100000000000000000000000000000000000000	The effect of aspirin is:				
	(1)	by decreasing the synthesis of ethylene				
	(2)	by increasing the synthesis of ABA				
	(3)	by increasing the synthesis cytokinins				
	(4)	by increasing the synthesis of GA				
27.	Soma	atic embryos from cotyledon explants would develop in which of the following				
	sequ	ences ?				
	(1)	Globular, torpedo, heart, cotyledonary stage				
	(2)	Globular, heart, torpedo and cotyledonary stage				
	(3)	Cotyledonary, heart, globular and torpedo				
	(4)	Cotyledonary, torpedo, heart and globular				
28.	Lock	Lockhart equation explains relationship between the :				
	(1)	rate of increase in cell volume, turgor pressure and cell wall				
	(2)	cell volume and respiration speed				
	(3)	cell volume and cellular organelles health				
	(4)	cell volume and oxidative phosphorylation rate				
29.	Asda-Halliwell pathway protects plants against oxidative stress during unfavorable					
	environmental growth regimes. The following are some statements related to					
	the	stresstolerance mechanism through this pathway in plants:				
	(1)	Oxygen acceptor electrons as an alternative electron acceptor				
	(2)	Hydrogen peroxide is reduced by catalase to form water				
	(3)	Ascorbate is oxidized and regenerated				
	(4)	Glutathione is oxidized and reduced				
30.	Whie	th are true in case of pollen allergens ?				
	(a)	Includes pectin-degrading enzymes				
	(b)	Diseases resistant proteins				
	(c)	Ca ⁺² Binding proteins				
	(1)	(a) only (2) (b) only				
	(3)	(c) only (4) (a), (b), (c)				

7

DL-315-BOT—A

P.T.O

31.	The	fruits undergo burst in respira	ition as	they ripen is called :			
	(1)	respiratory hormone burst	(2)	respiratory climacteric			
	(3)	respiratory elevation	(4)	respiratory depression			
32.	Wha	t are the chemicals found in	stem a	and root of phyllanthus amaru			
	respectively ?						
	(1)	Phyllemblic acid and Ascorb	ic acid				
	(2)	Ascorbic acid and Phyllemble	ic acid				
	(3)	Glycoflavones and Saponin					
	(4)	Saponin and Glycoflavones					
33.	ICAI	R-Indian Institute of Horticultu	re Resea	arch is located in :			
	(1)	Maharashtra	(2)	Kerala			
	(3)	Telangana	(4)	Karnataka			
34.	Whie	ch of the following is best mat	ch ?				
	(a)	Sundarban	(I)	Sanctury			
	(b)	Bandipur	(H)	Biodiversity hot spot			
	(c)	Hazaribagh	(III)	National Park			
	(d)	Western Ghat	(IV)	Biosphere reserve			
	(1)						
	(2)	(2) (a)—(II), (b)—(III), (c)—(IV), (d)—(I)					
	(3)	(3) (a)—(IV), (b)—(II), (c)—(III), (d)—(I)					
	(4)	(a)— (II) , (b) — (IV) , (c) — (1) , (a))—(III)				
35.	The	The largest rattan genus distributed in Asia is :					
	(1)	Calamus	(2)	Daemonorops			
	(3)	Ceratolobus	(4)	Korthalsia			
36.	Phyllanthus genus growth forms including :						
	(a) annual and perennial herbs						
	(b)	shrubs and climbers					
	(c)	(c) floating aquatics and herbs					
	(d)						
	(1)	(a) and (b)	(2)	(a), (b), (e) and (d)			
	(3)	(a) and (c)	(4)	(b), (c) and (d)			
37.	Gurr	marin is obtained from :					
	(1)	Mangifera indica	(2)	Andrographs sps			
	(3)	Eucalyptus sps	(4)	Gymnema sylvestre			

38.	Shola	ı is :						
	(1)	Dryland						
	(2)	Deciduous forest surrounde	d by gras	sland				
	(3)	Chapprals						
	(4)	Evergreen forest surrounde	d by gras	sland				
39.	Gir	national park is located in :						
	(1)	Sikkim	(2)	Karnataka				
	(3)	Gujarat	(4)	Maharashtr	а			
40.	Find	the correct match of ICAR I	Research	Institutes wit	h place	es :		
	(a)	Central Plantation Crop Re	search Ir	stitute	(I)	Hyderabad		
	(b)	Central Institute of Cotton	Research	E:	(II)	Kanpur		
	(c)	Indian Institute of Pulses	Research		(III)	Kasaragod		
	(d)	Central Research Institute	of Drylar	nd Agriculture	(IV)	Nagpur		
	(1)							
	(2)	- 10 글에 10 10 10 15 15 15 15 15 15 15 15 15 15 15 15 15						
	(3)							
	(4)	(a)—(IV), (b)—(II), (c)—(III),	(d)—(I)					
41.	Chro	Chromosome organization demonstrated from a series of biochemical, electron						
	micr	microscopic and X-ray crystallographic studies. When interphase chromatin is						
	isola	isolated in low salt buffer and observed under EMS 11 nm bead on string						
	orga	organization is seen. Interphase chromatin directly observed under EM shows						
	30 ı	30 nm fibre. When histones are depleted from metaphase chromosome and						
	visu	visualized under EM, it shows a huge number of very large loops associated						
	with	with scaffold.						
	The	The following interpretations can be made from these:						
	(I)	11 nm fibre is formed whe	n nucleos	omes are brou	ight cl	oser by scaffold		
	(II)	30 nm interphase chroma	tin is for	med by zig-z	ag org	anization of a		
		nucleosomes of 11 nm fibre	е					
	(III)	30 nm fibre makes a soleno	d packing	to form the r	netaph	ase chromosome		
	(IV)	30 nm fibre gets organized i	into loops	due to SARs	getting	associated with		
		scaffold proteins and comi-	ng closer					
	The	correct combination of interp	retations	is :				
	(1)	(I) and (IV)	(2)	(1) and (III	()			
	(3)	(I) and (II)	(4)	(II) and (I	V)			

42.	Polyt	ene chromosome is generated due to ;					
	(1)	Failure of DNA replication					
	(2)	Repeated DNA replication without segregation of chromosomes					
	(3)						
	(4)	Due to extensive transcription process					
43.	The o	concept of recon was proposed by Seymour Benzer by studying recombination					
	betw	TO SEE THE SECOND SECON					
	(1)	Lysis mutants of bacteriophage T4					
	(2)	White eye mutants of Drosophila melanogaster					
	(3)	Biochemical mutants of Neurospora crassa					
	(4)	Auxotrophic mutants of Escherichia coli					
44.	When	a bacteria are transformed with DNA, the effectiveness with which they					
	take up DNA is quantified as the transformation efficiency. If the operational						
	definition of transformation efficiency is the number of bacterial colonies obtained						
	when	bacteria are incubated with 1 microgram of DNA. A new student prepared					
	bacterial cells suitable for transformation. On testing his preparation, he obtained						
	800 c	olonies when he plated the cells with 8 picograms of DNA. His transformation					
	effici	ency is :					
	(1)	1×10^7 (2) 1×10^6					
	(3)	8×10^9 (4) 8×10^5					
45.	While	e designing an experiment for Agrobacterium mediated plant transformation,					
	a student noted down the following points:						
	(a)	Ti and Ri plasmids induce crown gall and hairy root disease, respectively					
	(b)	Enzyme octopine synthase and nopaline synthase involved in the synthesis					
		of octopine and nopaline, respectively are encoded by T-DNA					
	(c)	All the six vir genes, vir A, vir B, vir C, vir D, vir E and vir G are absolutely					
		required for virulence					
	(d)	Almost perfect 25 bp direct repeate sequences flanking all Ti and Ri					

(1) (a), (b) and (c)

(2) (b), (c) and (d)

(3) (a), (c) and (d)

(4) (a), (b) and (d)

plasmids in the T-DNA region is essential for T-DNA transfer Which one of the following combinations of the above statements is correct?

46.				A from an E. coli strain with the in of genotype ZY. The frequencies		
	110000	ansformed classes were:	m e era	in a generate 21. The frequencias		
	01 11	Z+Y+		200		
		Z+Y		400		
		Z-Y		400		
		Total		1000		
	Wha			locus is co-transformed with the		
		cus ?		Total II to Hamiltonia with the		
	(1)	1	(2)	20		
	(3)	33.3	(4)	40		
47.				is defined as the temperature at		
41.						
		which half the molecules have dissociated into single strands. Tm will be				
	(1)	maximal at : (1) Low ionic strength and high DNA conc.				
	(2)	High ionic strength and hig				
	(3)	High ionic strength and low	22729200			
	(4)	Low ionic strength and low				
48.		lent mutation in a gene result		TOTAL STATE OF THE		
40,				of the mRNA encoded by the gene		
	(1)			e protein encoded by the gene		
	(2) (3)	No expression of the protei				
		and the second s		ant effect on the functional activity		
	(4)			and chest on the randomized activity		
49.	of the protein encoded by the gene A cross is made between a pure breeding plant having red coloured flowers with					
110.	a pure breeding plant having white coloured flowers. Such a cross is called					
	(1)	Test cross	(2)	Monohybrid cross		
	(3)	Dihybrid cross	(4)	Back cross		
50.		7.	11170100			
50.		A moving ant, upon encountering an obstacle, may turn either left or right and continue moving. To test the hypothesis that the direction chosen by the an				
		andom, the most appropriate s				
	(1)	Student's t-test		χ ² -test of independence		
	20.00	χ ² -test of goodness of fit		correlation test		
181916 T						
DL-	315-B(J'I'—A	11	P.T.C		

51.	The	% base pair values of four nucleic acid samples are provided below. Which				
	one	of the following samples has the highest Tm ?				
	(1)	A = 31; T = 21; G = 20; C = 28				
	(2)	A = 26; $T = 14$; $G = 34$; $C = 26$				
	(3)	A = 17; $T = 19$; $G = 33$; $C = 31$				
	(4)	A = 20; T = 30; G = 25; C = 25				
52.	Whie	ch îs correct ?				
	Splie	ceosomes				
	(A)	are composed of RNA and protein				
	(B)	recognize RNA sequences that signal for removal of introns				
	(C)	can produce different mRNA molecules by splicing at alternate site				
	(1)	(A) and (B) (2) (A) and (C)				
	(3)	(B) and (C) (4) (A), (B) and (C)				
53.	Whie	ch of the following level of sequence correctly represent the classification				
	of p	lants ?				
	(1)	Kingdom-Division-Class-Order-Family-Genus-Species				
	(2)	(2) Kingdom-Division-Order-Class-Family-Genus-Species				
	(3)	(3) Division-Kingdom-Class-Order-Family-Genus-Species				
	(4)	(4) Kingdom-Division-Class-Family-Order-Genus-Species				
54.	According to the "Sexual System of Classification" the entire plant kingdom is					
		led into:				
	(1)	23 Classes (2) 24 Classes				
	(3)	240 Classes (4) 1336 Classes				
55.	Which of the following statements are correct ?					
	(A)	Obdiplostemonous means outer whorl of stamens are opposite to petals				
		and inner whorl are opposite to sepals				
	(B)	Ruminate endosperm is present in Annonaceae				
	(C)	Gynostegium is seen in Apocynaceae				
	(D)	Carculus fruits are present in Lamiaceae				
	(1)	(A), (B), (C), (D) (2) (A), (B), (C)				
	(3)	(B), (C), (D) (4) (A), (B), (D)				
DI.	14 F T14	200 200 200 200 200 200 200 200 200 200				

56.	An illustration of the evolutionary relationship among a group of organisms is					
	known as Phylogenetic Tree. This is also known as :					
	(1)	Dendrogram	(2)	Tree Monogram		
	(3)	Cystogram	(4)	Genogram		
57.	Whic	h of the following com	outer based softwa	are is used for phylogenetic analysis		
	based upon multiple organism gene sequence ?					
	(1)	BLAST	(2)	Clustal W		
	(3)	Pubmed	(4)	SWISS-PROT		
58.	Graf	ting is <i>not</i> possible in	monocot plants	because they :		
	(1) lack cambium and have scattered vascular bundles					
	(2)	have parallel bundle	es			
	(3)	are herbaceous				
	(4)	have smaller flower				
59.	If ea	ich stamen of a flower	is having 580 po	llen mother cells, how many pollen		
	grains are produced from a single flower of Dalbergia ?					
	(1)	41760	(2)	17200		
	(3)	20880	(4)	23200		
60.	A ve	A very popular anti-cancer medicinal plant Catharanthus roseus belong to :				
	(1)	Malvaceae	(2)	Аросупасеае		
	(3)	Asclepiadaceae	(4)	Lamiaceae		
61.	The malpighian cells in the seed coat of Fabaceae are :					
	(1)	Macrosclereids	(2)	Brachysclereids		
	(3)	Osteosclereids	(4)	Astrosclereids		
62.	How many types of spores are produced after somatic hybridisation and before					
	reduction division in black stem rust of wheat?					
	(1)	1	(2)	2		
	(3)	3	(4)	4		
63,	The cell wall of bacteria is made up of peptidoglycans which consist of the					
	alternating unit of :					
	(1) N-methylglucosamine and N-acetylglucosamine					
	(2)	N-acetylglucosamine	and N-acetyl my	ramic acid		
	(3)	N-aminoglucosamine	and N-acetyl m	uramic acid		
	(4)	N-acetylglucosamine	and M-chlorober	nzoic acid		
DL-	315-B0	OT—A	13	P.T.O		

64.	Whic	Which of the following virus has helical symmetry?				
	(1)	Adenovirus	(2)	φX174		
	(3)	Vaccinia	(4)	TMV		
65.	Wha	t is the genetic materia	d of geminiviru	ses ?		
	(1)	ssDNA	(2)	dsDNA		
	(3)	ssRNA	(4)	DNA-RNA Complex		
66.	Ther	e are small outgrowths	on leaf and ster	n which is usually associated with		
	mosa	mosaic. This phenomenon is known as :				
	(1)	Stunting	(2)	Enations		
	(3)	Virescence	(4)	Chlorosis		
67.	A ba	A bacterial cell divides once every minute. It takes an hour to fill a glass. How				
	mucl	n time will it take to f	ill half of the g	lass ?		
	(1)	30 minutes	(2)	15 minutes		
	(3)	29 minutes	(4)	59 minutes		
68.	The	The order Centrales and Pennales belong to which of the following class:				
	(1)	(1) Both belong to class Bacillariophceae				
	(2)	(2) Both belong to class Chloromonodineae				
	(3)	(3) Centrales belong to class Bacillariopheeae whereas Pennales belong to				
		class Chloromonodineae				
	(4)	Both belong to class	Rhodophyceae			
69.	The members of order Laminariales are commonly known as:					
	(1)	Sinus	(2)	Desmids		
	(3)	Kelp	(4)	Laminarin		
70.	It is compact globose structure formed by the aggregation and adhesion of hyphae					
	whic	which may survive for many years and represent the resting stage of fungus				
	It ac	It accumulates the reserve food also. This mass is known as:				
	(1)	Haustoria	(2)	Sclerotium		
	(3)	Appressorium	(4)	Prosenchyma		
71.	Which of the following highly fatal toxin and carcinogen substance produced by					
	some fungus species which affect the central nervous system?					
	(1)	Gyromitrin	(2)	Trisporic acid		
	(3)	Neocercosporin	(4)	Ephedrine		
DL-	315-BC)T—A	1.4			

72.	The acrosome is an organelle develop over the head of spermatozoa is derived					
	from :					
	(1)	Smooth endoplasmic reticulum	(2)	Rough endoplasmic reticulum		
	(3)	Golgi complex	(4)	Mitochondria		
73.	Because of presumed lipid content, one of the cellular organelle is also known					
	as Lipochondria, This cellular organelle is :					
	(1)	Smooth endoplasmic reticulum	(2)	Mitochondria		
	(3)	Golgi Complex	(4)	Plasma membrane		
74.	This protein is produced by plant cell wall which acts as mechanical barrier					
	to bl	lock spread of pathogen between	cells	during infection :		
	(1)	Extensin	(2)	Exarch		
	(3)	Effectors	(4)	Elicitors		
75.	Whic	ch of the following statements is	correct	about the meiosis cell division ?		
	(1)	It possess 2 cell .divisions, prod	luce 4	daughter cells with haploid no. of		
		chromosome, genetically differe	nt from	m parent		
	(2)					
		chromosome, genetically different from parent				
	(3)	(3) It possess 2 cell divisions, produce 4 daughter cells with diploid no. of				
	chromosome, genetically different from parent					
	(4)	(4) It possess 2 cell divisions, produce 4 daughter cells with haploid no. of				
		chromosome, genetically simila	r from	parent		
76.	Glucose-6-phosphatase enzyme is found in :.					
	(1)	Smooth endoplasmic reticulum	(2)	Rough endoplasmic reticulum		
	(3)	Sarcoplasmic reticulum	(4)	Chromatin reticulum		
77.	Which of the following facilitates movement of substances between the plant					
	cells ?					
	(1)	Plasma membrane	(2)	Plasmodesmata		
	(3)	Middle lamella	(4)	Cytoplasm		
78.	The zone of vegetation at the bottom cold layer of water zone where NO					
	temperature gradient is evident is known as :					
	(1)	Epilimnion	(2)	Thermocline		
	(3)	Metalimnion	(4)	Hypolimnion		
DL-	315-B	OT—A 15		P.T.O		

79.	Som	Some insects, birds and mammals in warm humid climates bear darker pigment				
	than the races of some species present in cool and dry climate. This phenomena					
	is k	is known as:				
	(1)	Gloger rule	(2)	Bergman's rule		
	(3)	Allens rule	(4)	Jordon's rule		
80.	This	is the process of soil formation thr	ough:	mineral matters and their biological,		
	topo	topographical and climatic interactions. This process is known as :				
	(1)	Melanization	(2)	Eluviation		
	(3)	Pedogenesis	(4)	Podosolization		
81.	Pher	nology of the plant is affected by	its re	sponse to alternating high and low		
	temp	perature in diurnal cycle is know	n as	*		
	(1)	Phenotherm	(2)	Thermoperiodism		
	(3)	Thermophile	(4)	Hekistotherms		
82.	The	cooling of seeds at low tempera	ture i	n order to accelerate flowering is		
	knov	vn as :				
	(1)	Photoperiodism	(2)	Aestivation		
	(3)	Vernalization	(4)	Senotherm		
83.	Sam	e species differ in appearance du	e to	environmentally induced variations		
	are	known as :				
	(1)	Ecads	(2)	Ecospecies		
	(3)	Ecotypes	(4)	Ecocline		
84.	Species that occur in different geographical regions are called:					
	(1)	Sympatric	(2)	Allopatric		
	(3)	Amphitheatric	(4)	Fasciation		
85.	In context with population ecology "a bell-shaped polygon" is related to :					
	(1)	Age structure of population	(2)	Natality of population		
	(3)	Size and density of population	(4)	Dispersion of population		
86.	In plant ecology the "Seral Stage" is related to:					
	(1)	Size and density of population	(2)	Climax Community		
	(3)	Seed dormancy	(4)	Ecological natality		
87.	What is the total area of "Gulf of Mannar Biosphere Reserve" in terms of Square					
	kilor	kilometer ?				
	(1)	1,500	(2)	10,500		
	(3)	2,837	(4)	5,520		

88.	Plan	ts that are grown in polluted s	oil, their	roots can extract the contaminant		
- Carriera	like heavy metals by one of the two ways; either breaks the contaminant down					
		in the soil or to suck the contaminant up and above it in the stem and leaves				
		of plant. This phenomenon is called:				
	(1)	Phytoremediation	(2)	Bio-magnification		
	(3)	Phytomining	(4)	Bio-transformation		
89.	Major pollutants responsible for depletion of ozone layer in the atmosphere are :					
	5500	tana 👫 - Baran ingga ing tangga ingga ing				
		(2) Sulfur dioxides, methane and Carbon monoxide				
		(3) Carbon monoxide and Carbon dioxide				
00	(4)	PAN and Carbon monoxide				
90.		What is "Micropropagation" ?				
		(1) Regeneration of whole plant through tissue culture media				
	(2)	Microbes and plant culture				
		(3) Development of microbes in plant cell and tissues				
	(4)	Transfer of genes into plan				
91.		The asexual propagation of plants by detachment of some part of the plant				
		body e.g., a cutting and its subsequent development into a complete plant is				
	calle	ed :				
	(1)	Synchronous culture	(2)	Vegetative propagation		
	(3)	Parasexual hybridization	(4)	Morphogenesis		
92.	Thes	These are cells or plant containing nucleus of one species but cytoplasm from				
	both the parental species are called :					
	(1)	Cybrid	(2)	Capsella		
	(3)	Callus	(4)	Meristemoid		
93.	Nicotine is plant based secondary metabolites which is used as :					
	(1)	Perfume	(2)	Insecticides		
	(3)	Anti-biotics	(4)	Hormones		
94.	Wha	at is "Canavanine" ?				
	(1)	A type of vitamin				
	(2)	A type of monosaccharides				
	(3)	A type of plant hormone				
	(4)	An amino acid which is no	t found	in protein		
TAT			17	P.T.O		
171.	010-D	OT—A	A 1	1.11		

95.	Liqu	Liquid Nitrogen is used in the laboratories for cryopreservation of seeds, pollens				
	etc.	etc. What is the temperature of liquid Nitrogen?				
	(1)	−96°F	(2)	-96°C		
	(3)	−196°F	(4)	–196°C		
96.	'F" f	actor is the very imp	ortant feature of	E. coli. Replication of F factor in		
	E. c	E. coli is strictly controlled. The F factor contains gene oriS, rep E, parA, parB				
	and	and parC. Based upon these features Shizuya et al in 1992 developed a high				
	capa	capacity DNA insert vector, which is very much in use for preparing genomic				
	library of higher organisms. What is the name of the vector?					
	(1)	BAC vector	(2)	PAC vector		
	(3)	YAC vector	(4)	Fosmid vector		
97.	Dur	ing isolation of DNA	A from plant cell	, a particular ratio of phenol :		
	chlo	roform : isoamyl alcol	ool is used. How	do they work ?		
	(1)	Phenol denature pr	otein and isoamyl	alcohol denature plasmid DNA		
	(2)	Phenol denature pr	otein and isoamyl	alcohol prevent loss of DNA and		
		frothing				
	(3)	Phenol denature cell	wall and isoamyl	alcohol denature plasma membrane		
	(4)	This ratio helps in of DNA	the final stage of	of DNA isolation for precipitation		
98.	Whi	Which of the following diseases is caused by Agrobacterium tumefaciens?				
	(1)	brain tumor in hun		y Agrooucterium tumefuctens :		
	(2)			ultural cron		
		(2) powdery mildew disease in any agricultural crop (3) bacterial blight in rice				
	(4)	plant tumor				
99.	Autoclaving is the method of sterilization of equipment, certain buffers and media.					
		Usually, at what temperature and pressure it is used in the laboratory ?				
	(1)	221°C and 15 poun				
		(2) 121°C and 15 pounds of psi respectively				
	0.00.00.00	(3) 115°C and 121 pounds of psi respectively				
	(4)	221°C and 115 pou				
100.	Which of the following antibiotic resisiance gene is present in YAC vector ?					
enversetti	(1)	Ampicillin	(2)	Chloramphenicol		
	(3)	Kanamycin	(4)	Streptomycin		
DI O	3 E 137	ATD. A	10			

Space for Rough Work

Space for Rough Work